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Abstract

Gödel regarded the Dialectica interpretation as giving constructive
content to intuitionism, which otherwise failed to meet reasonable con-
ditions of constructivity. He founded his theory of primitive recursive
functions, in which the interpretation is given, on the concept of com-
putable function of finite type. I will 1) criticize this foundation, 2)
propose a quite different one, and 3) note that essentially the latter
foundation also underlies the Curry-Howard type theory and hence
Heyting’s intuitionistic conception of logic. Thus the Dialectica in-
terpretation (in so far as its aim was to give constructive content to
intuitionism) is superfluous.

In the set of notes [1938a] for an informal lecture, Gödel refers to a hier-
archy of constructive or finitary systems, the lowest level of which he called
finitary number theory and is, in fact, primitive recursive arithmetic (PRA).
He mentions three constructive extensions of this system: the intuitionism
of Brouwer and Heyting (the “modal-logical route”), concerning which he is
quite critical, the use of transfinite induction, inspired by Gentzen’s consis-
tency proof for PA, and the use of functions of finite or even transfinite type
over the type N of natural numbers. The latter extension seems to be men-
tioned here for the first time in connection with constructive extensions of
finitary number theory.1 He ranks it the most satisfactory of these extensions

∗Versions of this paper were presented at a joint workshop on Hilbert at Carnegie-
Mellon University and the University of Pittsburgh in June 1998, at a workshop on foun-
dations of mathematics at UCLA in May 2005 and at the IMLA ’05 workshop [Intuitionistic
Modal Logic and Applications, of course] in Chicago. I received helpful comments on all
of these occasions.

1As for the history of the idea of a hierarchy of types, I know only of these examples:
The hierarchy of transfinite types in which the natural numbers constitute the lowest type
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of PRA; but he gives no indication there about what can be accomplished
with it. However, in lectures in 1941 at Princeton and at Yale, the lec-
ture notes for the latter of which constitute [Gödel, *1941], he introduced
what came to be called the Dialectica or functional interpretation of Heyting
arithmetic HA and PA (regarded as a subsystem of HA). The details of
this interpretation were published first in the Dialectica paper [Gödel, 1958],
where he presents the interpretation as a consistency proof for HA relative
to his theory T of primitive recursive functions of finite type. But the earlier
lectures emphasize rather the failure of Heyting’s explanation of the logical
constants to give satisfactory constructive content to intuitionistic logic and
the role that Gödel believed the interpretation plays in supplying it (at least
in the context of arithmetic).

My aim here is not to discuss the technical details of the interpretation,
nor its applications or extensions in proof theory. These are nicely presented
in A. Troelstra’s introductory note to [Gödel, 1958; Gödel, 1972] in [Gödel,
1990] and in the more recent paper [Avigad and Feferman, 1998]. Rather,
I want to discuss the foundation of the theory T itself and its relation to
the foundation of HA. I believe that Gödel misconstrued both of them. His
misconception of the latter led him to want to replace the notion of proof in
it by the notion of function of finite type over the type N of natural numbers.
In fact, we will see that this notion of proof itself can be understood to
have type structure and, so understood, is immune to Gödel’s criticism of it
and, indeed, constitutes only a slight generalization of the notion of function
of finite type over N. Here of course I am referring to the Curry-Howard
theory of propositions-as-types [Howard, 1980]. Gödel’s misconception of
the former consists in the belief that a constructive theory of functions of
finite type requires that the higher type variables range only over functions
which are provably computable (berechenbaren). But he never spelled out a

and the successor type of A is the type A → 2 of all two-valued functions on A is introduced
by Cantor in [Cantor, 1891], as representing an unbounded sequence of cardinal numbers.
(The limit types were most likely intended to be the unions of the previous types.) In
his Principles of Mathematics, Russell introduced the finite types built up from the type
of individuals by pasing from types A and B to A → 2 and the type A ∧ B of sll pairs
of elements from A and B respectively. (Russell called them “couples with sense”.) In
[Hilbert, 1926], Hilbert introduced two hierarchies of height ω1 with lowest type M , one
starting with M being the domain of natural numbers and the other with it being the
second number class. In both cases, the ‘successor’ of the type A is the type A → M of
all M -valued functions on A and the limit types are of the form C → M , where C is the
union of the preceding types.
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satisfactory account of this which avoides the very intuitionistic logic that he
was attempting to reinterpret.

1. Let FT denote the set of formulas of propositional logic built up from
atomic formulas by means of implication → and conjunction ∧. FT (N)
denotes the set of such propositional formulas built up from the single atomic
formula N. We are interested in type-theoretic interpretations of FT and
FT (N). Namely, regard the atomic formulas as standing for arbitrary types
of objects, the atomic types. A → B is the type of all functions from A to
B, and A ∧ B is the type of pairs whose first term is of type A and whose
second term is of type B: i.e.

A→ B := AB A ∧B := A×B.

Write
a:A

to mean that a is of type A. We write A ∧ B ∧ C for (A ∧ B) ∧ C, etc.
Gödel included only the types built up from N by means of the operation of
passing from types A1, · · · , An, B to A1 ∧ · · · ∧ An → B. Via Schönfinkel’s
canonical correspondence f(a, b) = gab between functions f of type A∧B →
C and functions g of type A → (B → C), the type-forming operation ∧ is
dispensable in Gödel’s system. Another logical equivalence, namely between
A → B ∧ C and (A → B) ∧ (A → C), signals the correspondence between
objects f of the former type and (g, h) of the latter defined by fa = (ga, ha).
Thus, every finite type involving ∧ is represented by a type of the form
A0 ∧ · · · ∧ An (n ≥ 0) where the Ai do not contain ∧. So the net effect of
including ∧ is to allow us to represent n-tuples of objects of finite type by a
single object. But it will be useful as well as instructive to include it. The
extension of the finite types to include pairing is trivially conservative over
T, and so I will not bother to distinguish it from T.

P denotes propositional logic restricted to the connectives → and ∧. FT
is the set of formulas of P and its terms are as follows:

• Each variable of type A is a term of type A.

• If s:A and t:B, then (s, t) :A ∧B. (Pairing)

• If t:A ∧B, then tL:A and tR:B. (Left and Right Projection)

• If s:A→ B and t:A, then (s)t:B. (Evaluation)
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• If v is a variable of type A and t(v) : B, then λx : A. t(x) : A → B.
(λ−Abstraction)

We may think of a pair as a function defined on {L,R}, whose first term
is the value for L and whose second term is the value for R; but we do not
regard{L,R} as a type.

Projection (∧-elimination) and evaluation (→-elimination) are primitive
operations, implicit in the notion of a function. Pairing (∧-introduction) is
defined by

(s, t)L = s (s, t)R = t

λ-abstraction (→-introduction) is defined by λ−conversion:

(λx:A. t(x))s = t(s).

I will write st for (s)t, rst for (rs)t, etc., when no confusion results.
It is immediate that a formula A of P is a theorem of intuitionistic propo-

sitional logic iff there is a closed term of P of type A.
The terms of T are obtained by the above operations, with the atomic

types restricted to N, together with

• 0:N

• If t:N, then t′ :N

• If r :N, s:A and t:A→ A, then IA(r, s, t):A,

where, dropping the subscript, I(r, s, t), the rth iterate of t applied to s, is
defined by the equations

I(0, s, t) = s I(r′, s, t) = tI(r, s, t).

The formulas of T are built up from equations between terms of the same
type by means of the propositional connectives. Its axioms and rules of
inference are those of classical propositional logic, the defining equations
above for the projections, λ-abstraction and iteration, the rule of inference
by mathematical induction, the axioms (tL, tR) = t and the rule of inference
from φ → sv = tv to φ → s = t, when s and t are of type B → C and
the variable v of type B does not occur in φ, s or t. (Gödel does not include
this inference, which is equivalent to adding as axioms all instances of η-
conversion: λx:A. tx = t.)
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In place of iteration Gödel took as primitive the more general form of
primitive recursion, introducing, for r : N, s : A, and t : N → (A → A),
RA(r, s, t) of type A, where

R(0, s, t) = s R(r′, s, t) = trR(r, s, t)

But in the presence of pairing, this more general form is derivable using
I = IN∧A. Write f = λx :N. R(x, s, t). Let h :N ∧ A → N ∧ A be defined by
h(v, u) = (v′, tvu), where v is a numerical variable and u is a variable of type
A. Define f̄ = λx :N. I(x, (0, a), h) and then f = λx :N. f̄(x)R. Notice that
λx :N. (f̄x)L = λx :N. I(x, 0,′ ) = the identity function on N. So f0 = s and
fv′ = t(f̄v)L(fv) = tv(fv).

0 = 0′ → s = t is derivable for terms s and t of like type A. This is shown
by induction on A. When A = N, it follows by mathematical induction. The
case A = B ∧ C is trivial. If A = B → C, choose a variable v of type B
not to be in A. Then we have 0 = 0′ → sv = tv and so 0 = 0′ → s = t. It
follows that 0 = 0′ → φ is derivable in T for all formulas φ. This means that
negation can be defined

¬φ := φ→ 0 = 0′.

Since disjunction can be contextually defined in HA by

A ∨B := ∃x[(x = 0 → A) ∧ (x 6= 0 → B)]

it is not needed in T for the functional interpretation. (See the next section.)
So we may assume that the only propositional connectives are conjunction
∧ and implication →.

The usual axioms of 0 and successor are derivable in T: We obtain 0 6= t′,
i.e., 0 = t′ → 0 = 0′, for a numerical term t by applying the sign function
sgn, defined by sgn0 = 0 and sgnv′ = 0′, to both sides of 0 = t′. We
obtain s′ = t′ → s = t by applying the predecessor function pred, defined by
pred0 = 0 and predv′ = v, to both sides of s′ = t′.2

2. The functional interpretation consists in associating with each formula
φ(~v) of HA, with just the free numerical variables ~v, a formula

(1) ∃x∀yF (x, y,~v)

2I don’t understand the argument in [Gödel, 1972, fn. i] for the second of these axioms
using onl;y pred; but the second axiom is derivable using just pred and mathematical
induction.
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where x and y each range over some finite type, and F is quantifier-free.
With each proof in HA of the formula φ, Gödel shows how to associate a
closed term f and a proof in T of

F (f~v, y, ~v)

When φ(v) is atomic, then F (x, y,~v) = φ(~v) (where ∃x and ∀y are vacuous
quantifiers over numbers), and so a proof of 0 = 1 in HA would translate
into one in T. Thus we have a proof (in PRA) of the consistency of HA,
and so of PA, relative to T.

3. Gödel’s foundation of the theory T is the notion of a computable object of
finite type (in FT (N)). Computation concerns symbols: Given a function f
of type N → N and a number t, however these are presented, ft is a number;
but the requirement that f be computable is that we be able to effectively
determine the corresponding numeral from the numeral for t. Thus the
computable objects of type N are the numerals. A ∧ B is again simply
the cartesian product of A and B. A → B is the type of the computable
functions from A to B. A computable function of this type is defined in
[Gödel, 1972] to be a well-defined mathematical procedure for which it is
constructively evident that, applied to every computable object of type A, it
yields a computable object of type B.

However, this foundation is prima facie problematic and Gödel was well
aware of this. The difficulty of course arises in the case of A→ B. Notice that
already in the case of a function f of type N → N there is a problem because
of the notion of constructive evidence. Suppose for definiteness that the well-
defined mathematical procedure in question is given by a Turing machine.
What needs to be evident is that, for every numeral input, the machine halts
after a finite number of steps. This condition is of the form ∀m∃nC(m,n),
where C(m,n) expresses that for the input numeral m the machine halts in
n steps. But the constructive meaning of this is that there is a witness, i.e. a
numerical function g such that C(m, g(m)) is valid. Our original candidate f
for a computable function is primitive recursive in this g; but what about g?
If it is the constructivist contention that, to produce a function is to produce
a computable function, there seems to be a circle. One may well argue that
there could be good constructive grounds for admitting the function g other
than having a proof that it is computable. I wholeheartedly agree with this;
but then the same applies to f itself; and these grounds have nothing to do
prima facie with f or g being computable.
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Let me say straight off that there are two distinct ideas: one is construc-
tion and the other is computation. These have been confused in recent history,
but really are distinct. ‘Constructive’ means that the only witnesses of ex-
istential propositions one admits are ones that can be constructed, where of
course this implies some background rules of construction. From the con-
struction of an object, a means of computing it (in cases in which this idea
makes sense) may or may not be found. In the context of arithmetic and
analysis, constructive does imply computable (and this may indeed be the
motivation for some to proceed constructively); but this is a theorem, it is
not built into the notion of construction.

The situation for Gödel’s conception is even worse when we consider func-
tions of higher type. He himself suggests in [Gödel, 1972, p. 275, footnote 6]
that the definition of computable function of finite type may not be “suffi-
ciently clear”, but asserts that, nevertheless, there can be no doubt that the
functions of finite type introduced in T, the primitive recursive functions, are
computable. But this is at best misleading. If we accept Turing’s analysis of
a computation procedure at least (as indeed Gödel did), then we may regard
functions of finite type A as given by (numerical codes for) certain Turing
machines satisfying a certain condition CA, where

CN(t) = t is a numeral

CA→B(f) = ∀x[CA(x) →

{f} applied to x computes to some y such that CB(y)].

CA∧B((a, b)) = CA(a) ∧ CB(b).

This seems perfectly clear. But for example in the case of N → A, there
is a difficulty with our seeing that the primitive recursive functions are all
computable. Consider the case of the iteration fn = gna, where a is a
primitive recursive object of type A and g is a primitive recursive function of
type A→ A. The proof that f is computable proceeds from the assumption
that a and g are computable by showing that, for each n, fn is computable.
The argument is by induction on the numerical variable v applied to the
formula CA(fv). But, depending on the propositional complexity of the type
A, the logical complexity of the formula CA(fv) can be arbitrarily high: the
proof that every primitive recursive function of finite type is computable
requires all of HA.In fact, given any finitely axiomatized subsystem of the

7



axioms of HA, there is a a closed term t of T of type N → N such that
CN→N(t) is not a theorem of the subsystem. Gödel is certainly right that we
see immediately that f is computable, but that is because we immediately
accept mathematical induction applied to the formulas CA(fv). However
that should not be satisfactory for Gödel, since the aim of the Dialectica
interpretation was in part to give constructive content to such formulas. (See
[Gödel, *1941].) He himself wrote in a continuation of footnote 6

[I]f this replacement [of intuitionistic proof by computable func-
tion of finite type] is to have any epistemological significance, the
concept of computable function used and the insight that these
functions satisfy the axioms of T . . . must not implicitly involve
intuitionistic logic or the concept of proof used by Heyting.

He insists that his notion of computable function of type A does not encounter
this difficulty; but it is clear that he himself was not entirely convinced: he
continued to worry about the matter in his correspondence with Bernays and,
in the end, did not release the final version [Gödel, 1972] of his interpretation
for publication.

4. An alternative foundation for T is to introduce the so-called ‘minimal
term model’, in which the objects of type A are just the closed terms of T
of type A and the meaning of equations between such terms is defined as
follows: First, define the notion s � t of a term s reducing to another one t
as follows:

• s � s.

• If r � s and s � t, then r � t.

• If s = t is a substitution instance of a defining axiom, then s � t.

• if s(v) � t(v), then λx:A. s(x) � λx:A. t(x).

• If r � s and t � u, then rt � su and (r, t) � (s, u).

• If r � s, the r′ � s′.

• If r � r0, s � s0 and t � to, then IA(r, s, t) � IA(r0, s0, t0).

The relation s = t of definitional equality between terms of type A by induc-
tion on A as follows:
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• If A = N, then s = t iff they reduce to a common term.

• If A = B ∧ C, then s = t iff sL = tL and sR = tR.

• If A = B → C, then s = t iff sv = tv, where v is a variable of type B
not occurring in s or t.3

That this term model satisfies the axioms of Gödel’s theory T is shown in
[Tait, 1963; Tait, 1967] to be derivable in HA. Namely, apply the predicates
CA to the (not necessarily closed) terms of T of type A, let CN(r) mean that r
reduces to an irreducible term, and let and let ‘’s computes to t” mean that
s reduces to t. From CA(r) it follows that r reduces to an irreducible term
(necessarily unique by the Church-Rosser Theorem) and it easily follows from
this that the relation s = t is decidable.

But with this model, we give up founding the theory T on the notion
of a function of finite type entirely. We are dealing instead with terms (i,e,
first-order objects, codable by numbers) governed by a certain reducibility
relation.

The decidability of equations is essential for Gödel’s purpose, since the
propositional logic in T is classical and so the validity of excluded middle
must be justified for arbitrary equations. As a matter of fact, classical logic is
needed, not for the Dialectica interpretation, but rather because intuitionistic
propositional logic, in particular the logic of implication, is a target of Gödel’s
criticism that Heyting’s account of the meaning of the logical constants fails
to give them a satisfactory constructive sense. (We shall discuss this below.)
Once we establish that excluded middle is valid for equations, however, then
the propositional logic can be interpreted in terms of truth functions.4 But
as Gödel himself seems to have anticipated in notes for the lectures given in
Princeton in 1941 (see Troelstra’s introductory note [Gödel, 1995, p. 188] to
[Gödel, *1941]), it requires the resources of all of HA to prove that, for each
closed term s:A = (N → N) of T, CA(t).

3In the past I have defined s = t simply to mean that s and t reduce to a common
term; but that is unsatisfactory, since, for example, λx :A. fx ought to be definitionally
equal to f and (tL, tR) ought to be definitionally equal to t.

4The elimination of the logical constants in terms of truth functions cannot be carried
out in T itself, in the form Gödel presents it, since definitional equality of higher types is
not expressible in T. However, as we note immediately below, [Spector, 1962] shows that
it suffices to admit equality only between numerical terms and, with this restriction, the
logical constants can be eliminated in favor of truth functions.
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Moreover, the difficulty exists even for equations between numerical terms
in this minimal term model.5 The axiom tv = 0 ∨ tv 6= 0, where s and t are
closed terms of type N → N, must be founded on a proof that tn reduces
to a numeral for every n and, depending on t, this will require arbitrarily
large subsystems of HA. So, in particular, Spector’s [1962] observation that
Gödel’s interpretation of HA in T does not require equations among terms
of types 6= N does not help here.

Notice that there are really two problems with Gödel’s foundation for
T, one local and one global. The local problem is that introducing a given
function f of higher type A seems to require that we prove a logically complex
condition CA(f). The global problem is the one just mentioned that the proof
that the objects introduced in T really are computable, i.e. that the closed
numerical terms reduce to numerals, requires all of HA.6

In footnote h, attached to the footnote 6 (quoted in part above) in the
1972 paper, Gödel sketches a solution, at least in connection with the minimal
term model, to the local problem. The condition of being ‘constructively
evident’ in the definition of computable function is to be replaced by the
condition of being reductively provable.

[The concept of reductive proof] roughly speaking, is defined by
the fact that, up to certain trivial supplementations, the chain
of definitions of the concept occurring in the theorem together
with certain axioms about the primitive terms forms by itself a
proof, i.e., an unbroken chain of immediate evidences. In special
applications (as, e.g., in our case) this concept of proof can be

5Of course, we can prove by complete induction that u = v ∨ u 6= v for numerical
variables u and v, and this is often expressed by saying that numerical equality is decidable.
But what is proved by induction, as we normally understand it, is a statement about
numbers, as represented by numerals in the sequence 0, 0′, 0′′, . . ., not arbitrary numerical
terms.

6Of course, in place of HA we could use PRAwith quantifier-free transfinite induction
up to ordinals < ε0. But Gödel wished to provide an alternative to Gentzen’s consistency
proof for HA. Nevertheless, he remained interested in the problem of whether one could
assign ordinals < ε0 to the closed terms of T in such a way that s � t and s 6= t imply
that the ordinal of t is less than the ordinal of s. He wrote about such an assignment
in the passage from the Princeton lecture quoted by Troelstra, but it seems clear that he
never actually had one. Howard [1970] produced one which works for a restricted notion
of reduction (but one that nevertheless admits reduction to normal form). But in my own
last contact with Gödel, a phone conversation sometime in 1973 about something quite
different, he raised the question of such an assignment.
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made precise by specifying the supplementations, the axioms, and
the evidences to be used.

We are to think of the definition of a function as a theorem, stating the
unique existence of the object defined. The reductive proof is a proof of
this theorem.7 In our special case, the axioms are presumably the unique
existence of 0 and the successor function. Moreover, it is to be decidable
whether or not a proposition has a reductive proof.

I will not take the space to discuss all the alternative readings that I
have tried: Let me just say that I have failed to find a coherent reading
of this footnote. The idea seems to be that the predicates CA are being
replaced by new decidable predicates C ′A, where C ′A(t) asserts the reductive
provability of the defining equations of t (given the reductive provability of
their arguments—however that is to be understood). But then C ′A(t) cannot
imply CA(t), i.e. that t is computable. So, in whatever sense it may be valid,
the footnote cannot solve the global problem.

Gödel seems to have continued to believe, at least sometimes, that his
notion of reductive proof solved the local problem at least. In an undated
and unsent reply to a letter by F.W. Sawyer III in 1974 [?, pp. 210-11], he
refers to footnote h again as the solution of the problem—although he states
there that “to carry that out in detail is rather cumbersome, and the matter
probably cannot be explained convincingly in a footnote.” I don’t see that
he ever clearly addresses the global problem.

5. In any case, Gödel’s foundation for his theory T, given his aims, seems to
fail. I want now to consider a different approach to its foundation. Instead
of Gödel’s notion of computable function of finite type, we start with the
basic concept of a function simpliciter of finite type over N and ask: what is
contained in this concept? I believe that the answer to this question simply
is: the principles of definition and proof in T. (It would in fact suffice to show
merely that the concept of function of finite type over N at least contains
the principles of definition and proof in T.) We leave out of account, as
I have already argued that we should, the idea of computability. Rather,
we are concerned only with what objects we can construct in the domain of
finite types over N, given arbitrary objects of specific such types. The notion
of function is in itself not limited to what we can so construct. Among

7Gödel states that the ‘type character’ of the function is to be regarded as a part of its
definition; but clearly this is not part of what has to be proved.
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the functions of a given type, some will be constructible on the basis of the
concept of finite type over N and some may not (but may be constructible in
a domain including transfinite types over N, for example). The proper locus
of constructivity is in our reasoning and, in particular, in our reasoning about
numbers and functions, not in the concepts of number and function.

6. We begin by separating the notion of the system FT of finite types over
some ground types from that of the system FT (N) of finite types over N and
asking: What specific objects of type B can be constructed in the domain
FT from arbitrary object of types A1, . . . , An, respectively, where B and the
Ai are in FT? Of course, we are not really speaking of objects here, since
the atomic types of FT are unspecified. Rather, we are asking what specific
terms or, as I will call them, formal objects of type B can be constructed from
variables v1, . . . , vn of types A1, . . . , An, respectively. Clearly, these objects
should be closed under pairing, left and right projection, evaluation and λ-
abstraction—call them the operations of P . I would like to have, but don’t, a
satisfactory analysis of the notion of ‘formal object’ and be able to argue that
they constitute the least class of terms containing the vi and closed under
these operations, i.e., that they are precisely the terms of P containing no
(free) variables other than the vi.

There is in fact another question: What types are non-empty for all inter-
pretations of the atomic formulas? Reasoning classically, these are different
questions. For example Peirce’s law

[(A→ B) → A] → A

is classically non-null for every interpretation; but it seems clear that, when
A is atomic for example, there is no formal object of this type.

As was first pointed out by Läuchli in [Läuchli, 1965], the choice of ques-
tion is a choice of logics: The types of formally defined objects are, from
either a classical or constructive point of view, the theorems of intuitionis-
tic logic of implication and conjunction; the non-empty types are, speaking
classically, the theorems of the corresponding classical logic.)8

Note, incidentally, that our question is also not Läuchli’s, either in [Läuchli,
1965] or in [Läuchli, n.d.]. The question he answered is: for what A is there
a formal object of type A? In [Läuchli, 1965], he defines the formal objects

8I was kindly reminded by Denis Bonnay of the relevance of Läuchli’s work to the
present topic.
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to be certain terms in the theory H of an ε-structure consisting of infinitely
many urelements and sets of finite rank over the set Π of urelements, ex-
tended by explicit definition of functions. The question of whether A has
a formal object becomes a question of the validity in this structure of some
formula s ∈ t(A), where t(A) codes the type A and the free variables in s
and t(A), representing the atomic formulas in FT , range over the sets of
urelements. His result shows that there is such a term s iff A is a theorem
of intuitionistic logic, i.e., iff there is a closed term of P of type A. When
one’s concern is only for logic, for what is provable, this result suffices. But
our concern is with type theory, and the question is not about which types
A have formal objects, but about what formal objects of type A there are.
Moreover, for this purpose, the set theoretic framework of Läuchli’s analy-
sis is inappropriate, since we are asking what formal objects of type A are
contained in the concept of finite type, not in the concept of H. That his
analysis is not what we want is clear from the example s ∈ t(A→ (A→ A)),
where A is an atomic formulas and s is defined by

suv =

{
u if A is finite
v otherwise

In [Läuchli, n.d.] there is a better analysis of the notion of ‘formal objects’
of type A, according to which they are not syntactical objects, but are certain
objects in H. Let D be the least class containing Π and DE and D × E
whenever D,E ∈ D. The elements of

⋃
D are called functionals. For each

A ∈ FT , S(A) is defined by

• S(A) = Π, if A is atomic.

• S(A→ B) = S(A)S(B).

• S(A ∧B) = S(A)× S(B).

A permutation σ of Π induces a permutation of each S(A) as follows: For
f ∈ S(A → B), σf = σ ◦ f ◦ σ−1. For (a, b) ∈ S(A ∧ B), σ(a, b) = (σa, σb).
A functional φ ∈ S(A) is invariant iff σφ = φ for all permutations σ.

An assignment p of a set p(A) ⊆ Π to each atomic A, called a proof
system, induces an assignment of a set p(A) of functionals to each type A.
Namely

• p(A→ B) = {f ∈ S(A→ B) | ∀x ∈ p(A)fx ∈ p(B)}.
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• p(A ∧B) = p(A)× p(B).

Thus, S is the maximum proof system. The notion of ‘formal object’ of
type A that we can derive from this second paper of Läuchli is that of an
invariant functional that is in p(A) for every proof system p, and it seems
plausible that anything that we might want to count as a formal object will
be represented by such a functional. They are in any case easily seen to be
closed under the operations of P .

Question. Is every invariant functional which is in p(A) for each proof
system p defined by a closed term of P of type A?

Notice that the term s defined above corresponds to the two invariant func-
tionals f and g in p(A → (A → A)) for every proof system p, defined by
fab = a and gab = b, respectively. s denotes f in the proof system p when
p(A) is infinite and otherwise denotes g.

7. When we turn to the question of what is contained in the concept of a
number, i.e. an object of type N, surely the answer is it is precisely the
idea of a finite iteration. A numerical variable v stands for an arbitrary
finite iteration, which we may regard both as an object in itself, that can
be generated from the null iteration 0 by means of the successor operation,
and as a (type-free) operation which can be applied to any operation on any
domain to yield its iterate.9

The formal objects that can be constructed in the domain of finitary
types—essentially types of the form N∧ · · · ∧N—from variables v1, . . . , vn of
finitary types are exactly the terms of PRA containing only these variables.
(See [Tait, 1981]. The analysis of the notion of a formal object was easy in this
case.) If we are right about the formal objects of P , then the formal objects
that can be constructed in the domain FT (N) from variables v1, . . . , vn of
finite types over N are precisely the terms of T containing only free variables
from among v1, . . . , vn.

8. On the foundation of T we are considering, objects of type A → B are

9See [Tait, 1981]. Weyl (see [Weyl, 1921], the end of Part II §1 (“The Basic Ideas”)
and the first paragraph of §2a (“Functio Discreta”), and also [Weyl, 1949, 9. 33]) is
in agreement with this analysis. Note also that Wittgenstein, in the Tractatus Logico-
Philosophicus ([Wittgenstein, 1922]), and Church, in his The Calculi of Lambda Conver-
sion [Church, 1941], represent the numbers as (type-free) iterations.
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functions from A to B. This notion of function is open-ended: Whatever
principles we introduce for defining functions of a certain type 6= N, it will
always be possible to introduce new such principles that yield more functions
of that type. On the other hand, we are restricted to functions that are in
some way defined and so must reject the idea of absolutely ‘random’ func-
tions. For functions on our conception must be objects of proof and proofs
can only refer to objects via particular representations of them.

So the notion of definitional equality makes sense for functions in our
sense, but we lack Gödel’s motivation to interpret equations of higher type in
terms of definitional equality, namely that they are then decidable. For, even
when we restrict ourselves to closed terms of T, the proof that definitional
equality is decidable requires all of HA. We do interpret equations between
closed numerical terms of T, s = t, to mean definitional equality, but there
is no assumption that this relation is decidable. For s and t of type A→ B,
s = t has its usual extensional meaning:

s = t := ∀x:A. (fx = gx)

and for type A ∧B

(s, t) = (s0, t0) := s = s0 ∧ t = t0.

It follows of course that the atomic formulas of T cannot be assumed to be
decidable and that the propositional logic contained in T must therefore be
understood as intuitionistic. Moreover, equations now have logical structure
in general, and so, for the foundations of T, we have ended up, after all, in the
domain of intuitionistic logic that it was precisely Gödel’s aim to reinterpret.
But his attempt to provide a foundation for T that avoids intuitionistic logic
fails. Our aim is rather to provide a foundation for both T and HA that
avoids the objections that Gödel raised concerning the latter.

9. In [Gödel, *1941], Gödel takes the fact that PA can be regarded as a
subsystem of HA (namely the restriction of HA to the logical constants
∀ and →) as a symptom that intuitionistic logic oversteps the bounds of
constructivity. His diagnosis of how exactly it does so is that the intuitionistic
meaning of the implication P → Q, for example, requires a primitive notion
of proof; for it means that every proof of P can be transformed into a proof
of Q. He points out that this notion of a proof cannot be restricted to the
proofs in some particular formal system, and so “proof” must be taken in an
absolute sense. His contention is that
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[T]his notion of an intuitionistically correct proof or constructive
proof lacks the desirable precision. In fact one may say that it
furnishes itself a counterexample against its own admissibility,
insofar as it is doubtful whether a proof utilizing this notion of
proof is constructive or not (p. 194).

Presumably the difficulty with such a proof being constructive is that it
makes at least implicit reference to all proofs: it is in this way impredicative.
For example, a proof of P → Q is a proof about all proofs. So imprecision
and impredicativity are the charges against intuitionistic logic as Heyting
analyzed it, where the impredicativity is taken as a sign that the underlying
absolute notion of proof has not been thought through sufficiently.

The reason he gives for why the notion of proof underlying intuitionistic
logic in Heyting’s sense cannot be proof in some particular formal system is
that “For this notion the axioms of intuitionistic logic would not hold.” The
grounds for this remark most likely come from his paper “An interpretation
of the intuitionistic propositional logic” [Gödel, 1933f] in which, reading the
necessity operator B as meaning “it is provable that”, he gives a translation
of Heyting’s propositional calculus into the modal system S4 such that every
theorem of Heyting’s system translates into a theorem of S4 and, for example,
the translation of P ∨ ¬P is not a theorem.

B[BP =⇒ P ]

is a theorem of S4, and so when he writes that B cannot be understood as
provability in a formal system, he is referring to the fact that, if the formal
system is consistent and includes HA, say, then the above theorem is false
when we take P to be the formula 0 = 1. That this is what Gödel had in mind
with his remark that the relevant notion of proof cannot be proof in some
fixed formal system is further corroborated by his reference to intuitionism in
[Gödel, 1938a] as the “modal-logical route” to extending constructive mathe-
matics beyond finitary number theory. 10 Noting there the non-constructive

10This undoubtedly has a source in Heyting’s discussion of intuitionistic logic in
[Heyting, 1930b], where he too introduced BP as a meaningful proposition which, at
least in some cases, is distinct from P itself. But in his later treatments of intuitionistic
logic, he drops this: Every proposition P requires a ‘construction’ or proof as its warrant.
To assert that P is provable is no more than to assert that P . If BP were a proposition
distinct from P , what would its proofs be, other than proofs of P? See [Tait, 2001, p.
118] for further discussion of this.
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character of S4 as he interpreted it (since BP is a disguised existential propo-
sition), Gödel goes on to say that this non-constructivity can be avoided by
replacing provability as the basic notion by the proof relation ‘z ` P ’ or
‘z ` P,Q’, meaning that z is a proof of Q from P . Gödel did not develop the
treatment of intuitionism in terms of the provability relation, and in partic-
ular he neither explicitly identifies the range of the variable z in “z ` P” nor
tries to define the meanings of the logical constants in terms of the provability
relation. In the 1960’s Kreisel took the variables to range over constructions
and undertook to create a general theory of type-free constructions in which
the logical constants can be defined. Kreisel [Kreisel, 1962; Kreisel, 1965],
Nicolas Goodman, e.g., [Goodman, 1970], and others obtained limited re-
sults in this direction, but they are of an ad hoc character: given a part
of logic or arithmetic to be interpreted, one finds axioms for the theory of
constructions which suffices for it; and with the development of the Curry-
Howard theory, which introduces type structure into the notion of proof, the
theory of constructions was more or less abandoned.11 Gödel’s doubts about
the constructive character of intuitionistic logic seem to me to have been
tied to this conception of Heyting’s interpretation of the logical constants,
according to which it involves quantification over a type-free domain of con-
structions. As far as I know, there is no mention in Gödel’s papers of the
propositions-as-types conception.

10. The Curry-Howard theory of propositions-as-types provides a foundation
for Heyting’s logic and is, at the same time, a simple generalization of Gödel’s
primitive recursive functions of finite type. Namely the sentences (i.e. closed
formulas) of HA are themselves to be understood as types of objects. Like-
wise, the Curry-Howard theory completes our foundation for the theory T
by interpreting the universal closures of formulas of T and, in particular,
of the equations of higher type, as types. In fact, we will combine the two
by considering the theory HAω, which extends T by adding intuitionistic
quantification theory over each type in FT (N).12

11The situation is quite analogous to the type-free (i.e. rank-free) theory of sets. There
is no internal ground for the choice of axioms, only the external motive of wanting to
derive this or that particular result. Once one adopts the cumulative conception of sets,
the axioms (of ZF and much more) suggest themselves readily, as following from the
conception.

12The embedding of HAω in the Curry-Howard theory is carried out in [Martin-Löf,
1998], the manuscript for which was apparently distributed to a number of people in 1972.
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As in the case of the primitive recursive functions of finite type, where
we separated the theory of finite types over a set of arbitrary atomic types
from the contribution of N when we take it to be the only atomic type, in the
present case, we could separate intuitionistic or Heyting logic HLω of finite
type from its special application HAω to arithmetic and ask what formal
objects of type φ are there, when φ is a sentence of HLω. But what I could
say about that can be gleaned from what I have had to say about formal
objects of types in FT (namely, not enough), and in the interests of brevity,
I will leave this question aside. As in the earlier case, it suffices anyway
simply to see that the terms we actually introduce should count as formal
objects.

We have already specified the types expressed by equations between closed
numerical terms. We also know what types φ → ψ and φ ∧ ψ are, once we
know what types the sentences φ and ψ express. It remains only to explain
the meaning of the sentences ∀x : A. φ(x) and ∃x : A. φ(x), where φ(v) is
a formula containing only the variable v of type A. But these are simply
generalizations of A→ B and A∧B, respectively: Namely, corresponding to

A→ B := AB A ∧B := A×B

we have

∀x:A. φ(x) := Πx:Aφ(x) ∃x:A.φ(x) := Σx:A φ(x)

In other words, ∀x:A. φ(x) is the type of functions f defined on A such that,
for a:A, fa:φ(a), and ∃x:A. φ(x) is the type of pairs (a, b) such that b:φ(a).
Note that we have now specified the type of all equations s = t between
closed terms of T and so of all sentences of HAω.

Evaluation extends to the case in which s is of type ∀x : A. φ(x) and
t :A. Namely st is of type φ(t). So in this case, evaluation corresponds to
∀-instantiation or -elimination. Similarly, pairing extends to forming pairs
(s, t) of type ∃x:A. φ(x), where s:A and t:φ(s). It corresponds, in this case,
to ∃-introduction.

The defined operations of λ-abstraction and projection also extend to
these new function and pairing types, too, as follows:

If v is a variable of type A and t(v) : φ(v), then λx :A. φ(x) is of type
∀x:A. φ(x). This corresponds to universal quantifier introduction. However,
we need to make a familiar restriction on λ-abstraction in the context of
HLω. Suppose that t(v) contains a variable u of some type ψ(v), which
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contains one or more occurrences of v. Then λx :A. φ(x) cannot be formed.
To understand this in the more usual logical context, note that the variable
u, as a term of type ψ(v) corresponds to a hypothesis of ψ(v), so that t(v) is
a proof of φ(v) from the hypothesis ψ(v). So our restriction coincides with
that of not generalizing on a variable that occurs in a hypothesis of a proof.

The case of projections is less straightforward vis-a-vis the usual formal-
ization of logic. Let b :∃x :A. φ(x). Then bL is of type A and bR is of type
φ(bL). But bL is not a term in the sense of T, and so φ(bL) is not a formula of
HLω when the variable v of type A actually occurs in φ(v). Gentzen avoided
this problem by formulating a form of ∃-elimination which stays within HLω;
namely for any formula ψ (meaning in particular that it does not contain the
symbol x)

∃x:A. φ(x), ∀x:A. [φ(x) → ψ] ⇒ ψ

This is easily derivable using projections: if b:∃x:A. φ(x) and f :∀x:A[φ(x) →
ψ], then f(bL)(bR):ψ. So the type-theoretic conception of intuitionistic logic
includes all the logical inferences of HLω. However, it also leads out of the
class of formulas of HLω to formulas that contain terms of type A which
are not terms of T. But this in no way detracts from the point we are
making that HLω can be founded on a notion of proof which is a natural
generalization of the (impredicative) notion of a primitive recursive function
of finite type over N: it only indicates a certain incompleteness in the logical
framework of HLω.13

11. The only remaining types of inference in HAω that we have not cov-
ered are the principle of iteration, which we have already discussed, and the
principle of proof by mathematical induction

φ(0), ∀x:N[φ(x) → φ(x′)] ⇒ ∀x:N. φ(x)

But, given s of type φ(0), t of type ∀x : N[φ(x) → φ(x′)], and r of type N,
f = λx : N.R(x, s, t) is of type ∀x : N.φ(x). The reduction of this primitive
recursion to iteration simply generalizes the reduction in the case discussed
in §1, where the types are in FT (N): Let h : ∃x : N. φ(x) be defined by

13In the case of first-order logic, this incompleteness is inessential in the sense that every
first-order sentence which has a proof in the sense of type theory (i.e. using the projections
for ∃-formulas) from a set of first-order premises together with the assumption that the
domain of individuals is non-empty is already provable in HA from those premises. See
[Tait, 2003].
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h(v, u) = (v′, tvu). If f̄ = λx : N. Iψ(x, (0, a), h), where ψ = ∃x : N. φ(x),
then f = λx :N. f̄(x)R. For λx :N. (f̄x)L = λx :N. IN(x, 0,′ ) = the identity
function on N. So f0 = s and fv′ = t(f̄v)L(fv) = tv(fv).

12. We have exhibited Heyting’s underlying proof theoretical foundation of
intuitionistic arithmetic as consisting of a hierarchy of types over N which is
is a simple generalization of FT (N). Viewed in this way, it has the same claim
to constructivity as the ‘proof theory’ of FT (N), namely T. It is difficult to
see why one should regard the notion of proof in intuitionistic arithmetic as
in any sense more problematic than the primitive recursive functions of finite
type. In particular, the fact that the types φ of HA involve quantifiers is of
no consequence, since the use of bound variables is in principle eliminable.
(See [Weyl, 1918] and, more generally, [Tait, 1998b].)

The circularity that Gödel felt is involved in proving propositions, say,
of the form (A → B) → C, which seemed to him to concern proofs refer-
ring to ‘all proofs’, disappears once we see that proofs are stratified into
types, and that the types of the proofs associated with each of the distinct
subformulas of this formula are all distinct. Certainly this foundation for
intuitionistic arithmetic still involves impredicativity: If we prove the in-
duction step ∀x[φ(x) → φ(x′)] itself by induction, then this is a case of
impredicative definition, but in exactly the same sense as in T when we
define g : (N → N) → (N → N) using primitive recursion and then define
fn = gna for some a:N → N. Gödel’s further complaint about intuitionistic
logic that the notion of proof involved is ‘absolute’ and cannot be confined to
the proofs in some definite formal system now appears as perfectly analogous
to the situation regarding the finite types over N. The primitive recursive
functions of finite type A themselves form an incomplete totality of objects of
type A. By going to transfinite types we obtain, as Gödel, himself, observed,
new functions of type A. Similarly, by going to types ‘higher’ than the first-
order types in the extended sense, we would obtain new proofs of sentences
of HA. In both cases, function types A→ B or ∀xF (x) are open-ended.

Our foundation for intuitionistic logic is not prima facie entirely faithful
to Heyting’s. Heyting defines a proof of φ→ ψ, for example, to be a method
of transforming any proof of φ into a proof of ψ, whereas on our account,
a proof of φ → ψ is a function from the objects of type φ to the objects of
type ψ. What counts as a proof in this sense is always relative to the system
one is considering—the finite types over N, for example, or the sentences
of HA or of HAω. However, it seems reasonable to take the view that
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any adequately defined function of type φ → ψ is constructed within some
extension of HAω, and so the notion of a proof of some sentence χ of HAω

would coincide with that of an object of type χ, where the notion of proof
here is indeed open-ended.

Given that Gödel’s interpretation of HA requires a distortion of the in-
tuitionistic meaning of the logical constants—for example, ignoring that, in
a proof p:A→ ∃x:B. φ(x), when a:A, then the witness x = (pa)L in general
depends on a—clearly the Dialectica interpretation offers no advantage in
understanding intuitionistic logic.

13. For my final remark, I would like to repeat that, in what seems to me
to be the only viable foundation for Gödel’s theory of primitive recursive
functions and indeed for HAω, nothing is said about computability: The
objects introduced are the objects whose existence follows from the concepts
involved, i.e., which can be defined or constructed from the operations im-
plicit in these concepts. In the context in question, computability follows
from contructablity; but that is a theorem. It is not built into the concepts
themselves.

The confusion between what is computable and what is constructive
(i.e. can be constructed) has led to the debate, for example, about whether
Markov’s principle, that for a decidable numerical predicate φ(v),

¬∀x:N. φ(x) → ∃x:N. ¬φ(x),

is constructive. This principle holds under the Dialectica interpretation14

and, indeed, if the antecedent is true, a witness for the conclusion can be
computed. But the principle is not valid intuitionistically. Indeed, it is not
constructive: From the assumption of the antecedent ¬∀x:N. φ(x), i.e. from
a variable v of this type, no proof of the conclusion can be constructed. On
might be tempted to argue that we can construct a witness by iterating a
search procedure; but no iteration (i.e. bound on the search) is given us by v.
I would rather view Markov’s principle as an example of why, if one is looking
for methods of proof which automatically yield algorithms for computing a
witness for existential theorems, intuitionistic logic is too narrow.

14Gödel cites this at the end of footnote h in [Gödel, 1972] as evidence for the “higher
degree of constructivity” of his interpretation of the intuitionistic logical constants over
Heyting’s.
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