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INTRODUCTION 

In  this paper we propose two notations for describing 
aspects of computer systems that currently are handled 
by a melange of informal notations. These two nota- 
tions emerged as a by-product of our efforts to produce 
a book on computer structures (Bell and Newell, 1970). 
Since we feel i t  is slightly unusual to present notations 
per se, outside of the context of particular design or 
analysis efforts that use them, it is appropriate to 
relate some background history. 

The higher levels of computer structure-roughly, 
all aspects above the level of logical design-are 
becoming increasingly complex and, as a result, de- 
veloping into serious domains of engineering design. 
By serious we mean the growth of techniques of 
analysis and synthesis, with a body of codified tech- 
nique and design experience which professional de- 
signers must assimilate. In  the present state, most 
knowledge about the technologies for computer archi- 
tecture is embedded in particular studies for particular 
computer systems. Nothing exists comparable to the 
array of textbooks and systematic treatments of 
logical design or circuit design. 

We started off simply to produce a set of readings 
in computer systems, motivated by this lack of syste- 
matic treatment and the inaccessibility of good exam- 
ples. As we gathered material we became impressed 
(depressed is actually a better term) with the diversity 

*This paper is taken from Chapters 1 and 2, substantially 
compressed and rewritten, of a book, Computer Structures, 
Readings and Examples (Bell and Newell, McGraw-Hill, 1970), 
which is about to be published. All figures in the paper have been 
reproduced with the permission of McGraw-Hill. The research in 
this paper was supported by the Advanced Research Projects 
Agency of the Ofice of the Secretary of Defense (F 44620-67-C- 
0058) and is monitored by the Air Force Office of Scientific 
Research. This document has been approved for public release 
and sale; its distribution is unlimited. 

of ways of describing these higher levels. The amount 
of clumsy description-downright verbosity-even in 
purely technical manuals acted as a further depressant. 
The thought of putting such a congeries of descriptions 
between hard covers for one person to peruse and 
study was almost too much to contemplate. We began 
to rewrite and condense many of the descriptions. As 
we did so, a set of common notations developed. 
Becoming aware of what was happening, we devoted a 
substantial amount of attention and effort to creating 
notational systems that have some consistency and, 
hopefully, some chance of doing the job required. 
These are the PMS descriptive system for what we 
will call the PMS level of computer structure (essen- 
tially the information flow level), and the ISP descrip- 
tive system fo; defining the programming level in 
terms of the logic level (actually, the register-transfer 
level). 

Thus, these two notations were developed to do a 
descriptive task-to be able to write down the informa- 
tion now given in the basic machine manual in a 
systematic and uniform way for all current computers. 
They were to provide a complete defining description 
for complete systems, such as the IBM 7090 or the 
SDS 930. Hence, the essential constraints for the 
notations to satisfy were ones of completeness, flexi- 
bility, and brevity (i.e., high informational density). 

We think the two notations meet these requirements. 
They have not yet been used in a way that meets 
additional requirements that we would all put on 
notational systems; namely, that there be analysis and 
synthesis techniques developed in terms of them.* 

* There is currently a thesis in progress establishing a substantial 
amount of standard analysis at the PMS level. In addition, there 
exists at least one simulation system at the register-transfer level 
(Darringer, 1969) that bears a close kinship to ISP. Finally, one 
new computer, the DEC PDP-11, reported in this conference 
(Bell, et al., 1970), was designed using PMS and ISP as the 
working notations. 



352 Spring Joint Computer Conference, 1970 

use by many people. Thus, they are undoubtedly 
imperfect in a number of ways (even beyond the usual 
questions of taste in notation, which always prevents 
uniform agreement and satisfaction). 

By way of justification let us simply note the many 
places where pure descriptions (without analysis or 
synthesis techniques) are critical to the operation of 
the computer field. The programming manual serves 
as the ultimate educational and reference document 
for all programmers. Professional papers reporting on 
new computing systems give descriptions of the overall 
configuration; currently these are done by informal 
block diagrams. Each manufacturer adopts descriptive 
names of its own choosing, often for marketing purposes, 
to describe the components of its systems in sales 
brochures-e.g., selector, channel, peripheral processor, 
adapter, bus. During negotiations for the purchase or 
sale of computer system, overall descriptions (at the 
PMS level, as it turns out) are passed between manu- 
facturer and pdtential customer. Large amounts of 
rough performance analyses are based on such abbre- 
viated system descriptions. In  the classroom (and 
elsewhere) systems are presented briefly to make 
particular points about design features. A user, even 
though he knows the order code of a machine, needs to 
learn the configuration available a t  a given installation 
(which, again, is a description a t  the PMS level). The 
list could be extended somewhat further, but perhaps 
the point is made. There is a substantial need for a 
uniform way of describing the upper levels of computer 
structures, not just for computer design, but for 
innumerable other purposes of marketing, use, com- 
parison, education, e t ~ .  

With this preamble, let us describe the two nota- 
tions. Notations are not theoretically neutral. That is, 
they are based on a particular view of the systems to 
be described. Thus, to understand PMS and ISP we 
give briefly this view of computer systems. This ma- 
terial is elementary and known, a t  least implicitly, to 
all computer designers. But it serves to provide the 
rationale for the notations and to locate them with 
respect to other descriptions of computer systems. 
After we have given some of this background, we will 
describe, first, PMS and then ISP. The two descriptive 
However, the gains to the computer field simply from 
the use of good descriptive notations are immense. 
Thus, we think that these two notations should be 
put forward to the computer community, both for 
criticism and as one concrete proposal for the adoption 
of a uniform notation.** The present notations are 
quite new and have hardly been thoroughly tested in 

** A standards committee might be set up for dealing with these 
system levels and their description. 

systems have a common base of conventions, but i t  is 
simpler to treat them separately, especially when 
being informal. We will use the PDP-8 as an example 
for both PMS and ISP, since it is small enough to be 
completely described within the confines of this paper. 
At the end, in order to give some indication of gener- 
ality, we will treat briefly the CDC 6600. 

Our treatment here of these notations is essentially 
informal and heuristic. A complete treatment, as well 
as many examples, can be found in the forthcoming 
book (Bell and Newell, 1970). 

HIERARCHICAL SYSTEM LEVELS 

A computer system is complex in several ways. 
Figure 1 shows the most important. There are a t  least 
four levels that can be used in describing a computer. 
These are not alternative descriptions. Each level 
arises from abstraction of the levels below it. 

A system (at any level) is characterized by a set of 
components, of which certain properties are posited, 
and a set of ways of combining components to produce 
systems. When formalized appropriately, the behavior 
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Figure 1-Hierarchy of computer structures 
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of the systems is determined by the behavior of its 
components and the specific modes of combination 
used. Elementary circuit theory is the prototypic 
example. The components are R's, L's, C's and voltage 
sources. The mode of combination is to run wires 
between the terminals of components, which corre- 
sponds to an identification of current and voltage a t  
these terminals. The algebraic and differential equa- 
tions of circuit theory provide the means whereby the 
behavior of a circuit can be computed from the proper- 
ties of its components and the way the circuit is con- 
structed. 

There is a recursive or nested feature to most system 
descriptions. A system, composed of components 
structured in a given way, may be considered a com- 
ponent in the construction of yet other systems. There 
are primitive components whose properties are not 
explicable as the resultant of a system of the same 
type. For example, a resistor is usually not explained 
by a subcircuit, but is taken as a primitive. Some- 
times there are no absolute primitives, it being a matter 
of convention what basis is taken. For example, one 
can build logical design systems from many different 
primitives (AND and NOT; NAND; OR and NOT; 
etc.). 

A system level, as we have used the term in Figure 
1, is characterized by a distinct language for repre- 
senting and analyzing the system (that is, the compo- 
nents, modes of combination, and laws of behavior). 
These distinct languages reflect special properties of 
the types of components and of the way they combine. 
Within each level there exists a whole hierarchy of 
systems and subsystems. However, as long as these 
are all described in the same 1 a n g ~ a g e e . g . ~  a sub- 
routine hierarchy, all given in machine assembly 
languagethey do not constitute separate system 
levels. 

The circuit level, and the combinatorial switching 
sublevel and sequential switching sublevels of the 
logic level, are clearly defined in the current art. The 
register-transfer level is still uncertain because there is 
neither substantial agreement on the exact language 
to be used for the level, nor on the techniques of 
analysis and synthesis that go with it. However, there 
are many reasons to believe it is emerging as a distinct 
system level. 

In  the register-transfer level the system undergoes 
discrete operations, whereby the values of various 
registers are combined according to some rule, and 
then stored in another register (thus "transferred"). 
The law of combination may be almost anything, from 
the simple unmodified transfer (A + B) to logical 
cl jmbination (A t B A C) to arithmetic (A + B + C). 
'I hus, a specification of the behavior, equivalent to 

the boolean equations of sequential circuits or the 
differential equations of the circuit level, is a set of 
expressions (often called productions) which give the 
conditions under which such transfers will be made. 

There have been a number of efforts to construct 
formalized register transfers systems. Most of them 
are built around the construction of a programming 
system or language that permits computer simulation 
of systems on the RT level (e.g., Chu, 1962; Darringer, 
1969). Although there is agreement on the basic 
components and types of operations, there is much 
less agreement on the representation of the laws of 
the system. 

The state system representation is also at  the logic 
level, but it has been put off to one side in Figure 1. 
The state system is the most general representation of 
discrete system available. A system is represented as 
capable of being in one of a set of abstract states at  
any instant of time. (For digital systems the set is 
finite or enumerable.) Its behavior is specified by a 
transition function that takes as arguments the current 
state and the current input and determines the next 
state (and the concomitant output). A digital computer 
is, in principle, representable as a state system, but 
the number of states is far too large to make it useful 
to do so. Instead, the state system becomes a useful 
representation in dealing with various subparts of 
the total machine, such as the sequential circuit that 
controls a magnetic tape. Here the number of states is 
small enough to be tractable. Thus, we have placed 
state systems off to one side as an auxiliary to the 
logic level. 

The program level is not only a unique level of 
description for digital technology (as was the logic 
level), but it is uniquely associated with computers, 
namely, with those digital devices that have a central 
component that interprets a programming language. 
There are many uses of digital technology, especially 
in instrumentation and digital controls which do not 
require such an interpretation device and hence have 
a logic level but no program level. 

The components of the program level are a set of 
memories and a set of operations. The memories hold 
data structures which represent things both inside 
and outside of the memory, e.g., numbers, payrolls, 
molecules, other data structures, etc. The operations 
take various data structures as inputs and produce 
new data structures, which again reside in memories. 
Thus the behavior of the system is the time pattern 
of data structures held in its memories. The unique 
feature of the program level is the representation it 
provides for combining components-that is, for 
specifying what operations are to be executed on what 
data structures. This is the program, which consists of 
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a sequence of instructions. Each instruction specifies 
that a given operation (or operations) be executed on 
specified data structures. Superimposed on this is a 
control structure that specifies which instruction is to 
be interpreted next. Normally this is done in the order 
in which the instructions are given, with jumps out of 
sequence specified by branch instructions. 

In  Figure 1 the top level is called the Processor- 
MemorySwitch level, or PMS level for short. The 
name is not recognized, nor is any other, since the 
level exists only informally. Nevertheless, its existence 
is hardly in doubt. I t  is the view one takes of a com- 
puter system when one considers only its most aggre- 
gate behavior. I t  then consists of central processors, 
core memories, tapes, discs, input/output processors, 
communication lines, printers, tape controllers, busses, 
Teletypes, scopes, etc. The system is viewed as process- 
ing a medium, information, which can be measured in 
bits (or digits, characters, words, etc.). Thus the 
components have capacities and flow rates as their 
operating characteristics. All details of the program 
are suppressed, although many gross distinctions of 
encoding and information type remain, depending on 
the analysis. Thus, one may distinguish program from 
data, or file space from resident monitor. One may 
remain concerned with the fact that input data is in 
alphameric and must be converted into binary, or is in 
bit serial and must be converted to bit parallel. 

We might characterize this level as the "chemical 
engineering view of a digital computer," which likens 
i t  more to a continuous process petroleum distilling 
plant than to a place where complex FORTRAN 
programs are applied to matrices of data. Indeed, this 
system level is more nearly an abstraction from the 
logic level than from the program level, since it returns 
to a simultaneously operating flow system. 

One might question whether there was a distinct 
systems level here. In the early days of computers 
almost all' computer systems could be represented as in 
the diagram in MIT's Whirlwind Computer program- 
ming manual in Figure 2:  the four classic boxes of 
memory (storage), control, arithmetic, and input/ 
output (separated, in the figure). But current time- 
sharing and multiprocessing systems are orders of 
magnitude more complex than this, and it is known 
that the structure at  this level has a determining 
influence on system performance. (See the PMS diagram 
for the 6600 in Figure 6, by no means the most complex 
of current systems.) 

With this total view of the various systems levels 
we can locate both PMS and ISP. PMS is, of course, a 
systems level of its own, namely, the top one. ISP is a 
notation for describing the components and modes of 
combination of the programming level in terms of the 

Figure 2-Simplified computer block diagram Whirlwind I 
(courtesy of M.I.T.) 

f 1  I 

next level down, i.e., in terms of the register transfer 
level. That is, the instructions, operations and inter- 
pretation cycle are the defining components of the 
programming level arid must be given in terms of a 
more basic systems level. The programming level 
itself consists of programs written in the machine code 
of the system. In essence, a register-transfer description 
of a processor is an interpreter program for interpreting 
the instruction set. The interpreter describes the actual 
hardware of the processor. By carefully structuring a 
register-transfer description of a processor, instructions 
are precisely defined. 

Thus, ISP is an interface language. Similarly, inter- 
face definitions exist at  all levels of a system hierarchy, 
e.g., between the circuit level and the logic level. 
Normally, it is not necessary to have a special language 
for the interface; e.g., one simply writes a circuit 
description of an AND-gate. But with the programming 
level, it is most useful not to use simply a register 
transfer language, but to introduce a special notation 
(i.e., ISP). This will become clear when we describe 
ISP. 

PMS and ISP are also strongly related in that ISP 
statements express the behavior of PMS components. 
Thus, for every PMS component there are constructs 
in ISP that express its behavior; and each ISP state- 
ment implies particular PMS structures. 

A word should be said about antecedents. The PMS 
descriptive system is close to the way we all talk 
informally about the top level of computer systems; 
no one effort in the environment stands out as a pred- 
ecessor. Some notations, such as CPU (for central 
processing units), have become widespread. We clearly 
have assimilated these. Our modifications, such as PC 
instead of CPU, are dictated entirely by the attempt 
to build a consistent notation over the whole range of 
computer systems. With respect to ISP, we have been 
heavily influenced by the work on register transfer 
languages.* The one that we used most as a kernel 
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from which to grow ISP was the work of Darringer 
and Parnas (Darringer, 1968). In particular, their 
decision to work within the framework of ALGOL 
suited our own sensibilities, even though the final 
version of ISP departs from a sequential algorithmic 
language in a number of respects. 

PMS LEVEL OF DESCRIPTION 

Digital systems are normally characterized as 
systems that a t  any time exist in one of a discrete set 
of states, and which undergo discrete changes of state 
with time. Nothing is said about what physical state 
corresponds to a system state; or the behavior of 
compopents that transform the system from one state 
to another. The states are given abstract labels: S1, 
Sz, ... . The transitions are provided by a state-transi- 
tion table (or state diagram) of the form: if the system 
is in state Si and the input is Ij, then the system is 
transformed to Sk and evokes output 02. The "state- 
system" view captures what is meant by a discrete (or 
digital) system. Its disadvantage is its comprehensive- 
ness, which makes i t  impossible to deal with large 
systems because of their immense number of states (of 
the order 101°' states for a big computer). 

Existing digital computers can be viewed as discrete 
state systems that are specialized in three ways. First, 
the state is realized by a medium, called information, 
which is stored in memories. Thus, a processor has all 
its states made explicit in a set of registers: an ac- 
cumulator, an address register, an instruction register, 
status register, etc. No permanent information is 
kept in digital devices except as encoded in bits or 
some other information unit base in a memory. Sequen- 
tial logic circuits that carry out operations in the 
system may have intermediate non-staticized states 
(e.g., during a multiply instruction), but these are 
only temporary. Second, the current digital computer 
systems consist of a srriall number of discrete sub- 
systems linked together by flows of information. The 
natural representation of a digital computer system is 
as a graph which has component systems a t  the nodes 
and information flows as branches. This representation 
as an information flow network with functionally 
specialized nodes is a real specialization. Finally, each 
component in a digital system has associated with it a 
small number of discrete operations for changing its 
own state or the state of neighboring components. The 

* We have not been influenced in a direct way by the work of 
Iverson (Falkoff, Iverson and Sussenguth, 1964) in the sense of 
patterning our notation after his. Nevertheless, his creation of 
a full description of the IBM System/360 system in APL stands 
as an important milestone in moving toward formal descriptions 
of machines. 

total behavior of the system is built up from the 
repeated execution of the operations as the conditions 
for their execution become realized by the results of 
prior operations. 

To summarize, we want a way of describing a system 
of an interconnected set of components, which are 
individual devices that have associated with them a set 
of operations that work on a medium of information, 
measured in bits (or some other base). For the PMS 
level we ignore all the fine structure of information 
processing and consider a system consisting of compo- 
nents that work on a homogeneous medium called 
information. Information comes in packets, called 
i-units (for information units) and is measured in bits 
(or equivalent units, such as characters). I-units have 
the sort of hierarchical structure indicated by the 
phrase: a record consists of 300 words; a word consists 
of 4 bytes; a byte consists of 8 bits. A record, then, 
contains 300 X 4 X 8 = 9600 bits. Each of these 
numbers-300, 4, 8-is called a length. 

Other than being decomposable into a hierarchy of 
factors, i-units have no other structure at  the PMS 
level. They do have a referent-that is, a meaning. At 
the PMS level we are not concerned with what is 
referred to, but only with the fact the certain com- 
ponents transform i-units, but do not modify their 
meaning. These meaning-preserving operations are the 
most btisic information processing operations of all- 
and provide the basic classification of computer 
components. 

PMS primitives 

There are seven basic component types, each distin- 
guished by the kinds of operations it performs: 

Memory, M. A component that holds or stores 
information (i.e., i-units) over time. Its operations 
are reading i-units out of the memory, and writing 
i-units into the memory. Each memory that holds 
more than a single i-unit has associated with it an 
addressing system by means of which particular 
i-units can be designated or selected. A memory can 
also be considered as a switch to a number of sub- 
memories. The i-units are not changed in any way 
by being stored in a memory. 
Link, L. A component that transfers information 
(i.e., i-units) from one place to another in a computer 
system. I t  has fixed terminals. The operation is 
that of transmitting an i-unit (or a sequence of 
them) from the component at  one terminal to the 
component at  the other. Again, except for the change 
in spatial position, there is no change of any sort in 
the i-units. 
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Control, K. A component that evokes the operations 
of other components in the system. All other com- 
ponents are taken to consist of a set of discrete opera- 
tions, each of which-when evoked-accomplishes 
some discrete transformation of state. With the 
exception of a processor, P, all other components 
are essentially passive and require some other active 
agent (a K) t'o set them into small episodes of ac- 
tivity. 
Switch, S. A component that constructs a link 
between other components. Each switch has asso- 
ciated with it a set of possible links, and its opera- 
tions consist of setting some of these links and 
breaking others. 
Transducer, T. A component that changes the i-unit 
used to encode a given meaning (i.e., a given 
referent). The change may involve the medium 
used to encode the basic bits (e.g., voltage levels to 
magnetic flux, or voltage levels to holes in a paper 
card) or it may involve the structure of the i-unit 
(e.g., bit-serial to bit-parallel). Note that T's are 
meaning preserving, but not necessarily information 
preserving (in number of bits), since the encodings 
of the (invariant) meaning need not be equally 
optimal. 
Data-operation, D. A component that produces 
i-units with new meanings. I t  is this component 

that accomplishes all the data operations, e.g., 
arithmetic, logic, shifting, etc. 
Processor, P. A component that .is capable of inter- 
preting a program in order to execute a sequence of 
operations. I t  consists of a set of operations of the 
types already mentioned-M, L, K, S, T and D- 
plus the control necessary to obtain instructions from 
a memory and interpret them as operations to be 
carried out. 

Computer model (in PMS) 

Components of the seven types can be connected to 
make stored program digital computers, abbreviated by 
C. For instance, the classical configuration for a com- 
puter is: 

C : = M p - P C - T - X  

Here PC indicates a central processor and Mp a primary 
memory, namely, one which is directly accessible from 
a P and holds the program for it. T (input/output 
device) is a transducer connected to the external 
environment, represented by X. (The colon-equals 
(:=) indicates that C is the name of what follows to 
the right.) 

The classic diagrams had four components, since it 
decomposed the PC into a control and an arithmetic 
unit : 

where the heavy information carrying lines are for seems to be the appropriate way to functionally de- 
instructions and their data, and the dotted lines compose the system. 
signify control. Now we associate local control of each component 

Often logic operations were lumped with control, with the appropriate component to get: 
instead of with data operations-but this no longer 

PC := 

7 Mpy~-+ instruct ions 
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where the heavy lines carry the information in which 
we are interested, and the dotted lines carry informa- 
tion about when to evoke operations on the respective 
components. The heavy information carrying lines 
between K and Mp are instructions. Now, suppressing 
the K's, then lumping the processor state memory, 
the data operators, and the control of the data, opera- 
tors and processor state memory to form a central 
processor, we again get : 

Computer systems can be described in PMS at  
varying levels of detail. For instance, we did not 
write in the links (L's) as separate components. These 
would be of interest only if the delays in transmission 
were significant to the discussion at  hand, or if the 
i-units transmitted by the L were different from those 
available a t  its terminals. Similarly, often the encoding 
of information into i-units is unimportant; then there 
is no reason to show the T's. The same statement 
holds for K's-sometimes one wants to show the 
locus of control, say when there is one control for 

many components, as in a tape controller; but often 
this is not of interest. Then, there is no reason to show 
K's in a PMS diagram. 

As a somewhat different case, it turns out that D's 
never occur in PMS diagrams of computers, since in 
the present design technology D's occur only as sub- 
components of P's. If we were to make PMS-type 
diagrams of analog computers, D's would show exten- 
sively as multipliers, summers, integrators, etc. There 
would be few memories and variable switches. The 
rather large patchboard would be represented as a 
very elaborate manually fixed switch. 

Components are t(hemse1ves decomposable into 
other components. Thus, most memories are composed 
of a switch-the addressing switch-and a number of 
submemories. Thus a memory is recursively defined as 
either a memory or a switch to other memories. The 
decomposition stops with the unit-memory, which is 
one that stores only a single i-unit, hence requires no 
addressing. Likewise, a switch is often composed of :L 

cascade of 1-way to n-way switches. For example, the 
switch that addresses a word on a multiple-headed 
disk might look like: 

I S (random) - S (random) -S'(linear) - S (cyc 1ic)---M(word) 
\ \ \ \ 1 

The first S(random) selects a specific Ms.diskudriveu 
unit; the second S(random) is a switch with random 
addressing that selects the head (the platter and side) ; 
S(1inear) is a switch with linear accessing that selects 
the track; and S(cyc1ic) is a switch with cyclic address- 
that finally selects the M(word) along the circular 
recurring track. Note that the switches are realized by 
differing technologies. The first two S (random) 's are 
generally electronic (AND-OR gates) with selection 
times of 10 -- 100 microseconds, or perhaps electro- 
mechanical (relay). The S(1inear) is the electromechani- 
cal action of a stepping motor or a pneumatic driven 
arm which holds the read-write heads-the selection 
time for a new track is 50 -- 500 milliseconds. Finally, 
the S(cyc1ic) is determined by the rotation time of 
the disk and requires from 16 -- 60 milliseconds, 
depending on the speed (3600 -- 1000 revolutions/ 
minute). This decomposition capability allows us to 
be able to describe components with varying precision 
and accuracy. 

The control element of a computer is often shown 
as being associated with the processor-not to the 

control of a disk or magnetic tape, such a K is often 
more complex. When we suppress detail, controls often 
disappear from PMS diagrams. Alternatively, when we 
agglomerate primitive components. (as we did above 
when combining Mp and K(Mp) to be just Mp) into 
the physically distinct sub-parts of a computer system, 
a separate control, K, often appears. The functionally 
and physically separate control* has evolved in the 
last decade. These controls, often larger than a PC, 
are sometimes computers with stored control programs. 
When we decompose such a control there are: data 
operations (D) for calculating addresses or for error 
detection and error correction data; transducers (T) 
for changing logic signal levels and information flow 
widths; memory (M) as it is used in D, T, K, and for 
buffering; and finally a large control (K) which coordi- 
nates the activities of all the other primitives. 

* A variety of names for K's are used, e.g., controller, adapter, 
selector, interface, buffer multiplexor, etc. Often these names 
reflect other funct,ions performed by the device. 
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The components are named according to the function 
they perform and they can be composed of many 
different types of components. Thus, a control (K) 
must have memory (M) as a subcomponent, and a 
memory, M, may have a transducer (T) as well as a 
switch (S) as subcomponents. All of these subcompo- 
nen t~ ,  of course, exist to accomplish the total function 
of the component, and do not make the component 
also some other type. For instance, the M that does a 
transduction (T) from voltages on its input wires to 
magnetism in its cores and a second transduction from 
magnetism to voltages on its output wires does not 
thereby become a transducer as far as the total system 
functioning is concerned. To the rest of the system 
all the M can do is to remember i-units, accepting and 
delivering them in the same form (voltages). We 
define for each component type both a simple com- 
ponent and a compound component, reflecting in 
part the fact that complex subsystems can be put 
together to perform a single function from the view- 
point of the total system. For example, a typewriter 
may have 4 - 6 simple information transduction 
channels using video, tactile, auditory, and paper 
information carriers. 

PMS notation 

Various notational conventions designate specifica- 
tions for a component, e.g., Mp  for a functional classi- 
fication, and S(cyc1ic) for a type of switch access 
function in the case of rotating memory devices like 
drums. There are many other additional specifications 
one wants to give. A single general way of providing 
additional specifications is used so that if X is a com- 
ponent, we can write: 

to indicate that X is further specified by attribute al 
having value vl, attribute a2 having value vz, etc. Each 
parameter (as we call the pair ai vi is well defined inde- 
pendently of what other parameters are given; hence, 
there is no significance to the order in which they are 
written, or to the number which have to be written. 

According to this notation we should have written 
M (function : primary) or S(access-function: random) 
rather than Mp or S(random). There are conventions 
for abbreviating and abstracting parameters to avoid 
such a lengthy description. Alternative ways of writing 
Mp are: 

M (function: primary) complete specification 
M (primary) drop the attribute, function, 

since it can be inferred from 
the value 

M.primary use the value outside the pa- 
renthesis, concatenated with a 
dot 

M.P use an explicitly given abbre- 
viation, namely, primary/p 
(only if it is not ambiguous) 

MP drop the concatenation marker 
(the dot), if it is not needed to 
recover the two parts (all 
components are given by a 
single capital letter-here M) 

Each of these rules corresponds to a natural tendency 
to abbreviate when redundant information is given; 
each has as its condition that recovery must be possible. 

In the full description (Bell and Newell, 1970) each 
component is defined and given a large number of 
parameters, i.e., attributes with their domain of values. 
Throughout, the slash (/) is used to introduce abbre- 
viations and aliases as we go.* Any list of parameters 
does not exhaust those aspects of a component that 
one might ever conceivably want to talk about. For 
instance, there are many quite distinct dimensions for 
any component in addition to the information dimen- 
sion: packaging, physical size, physical location, 
energy use, cost, weight, style and color, reliability, 
maintainability, etc. Furthermore, each of these 
dimensions includes an entire set of parameters, just 
as the information dimension breaks out into the set 
of parameters illustrated in the figures. Thus the 
descriptive system is an open one and new parameters 
are definable at  any occasion. 

The very large number of parameters provides one 
of the major challenges to creating a viable scheme to 
describe computer systems. We have responded to this 
in part by providing automatic ways in which one can 
compress the descriptions by appropriate abbreviation 
-while still avoiding a highly cryptic encoding of 
each separate aspect. Abstraction is another major 
area in which some conventions can help to handle 
the large numbers of parameters. For instance, one 
attribute of a processor is the time taken by its opera- 
tions. This attribute can be defined with a complex 
value : 

Pc(operation-times : add : 4 ps, store : 4 ps, load : 4 ps, 
multiply: 16 ps, ...) 

That :is, the value is a list of times for each separate 
operation. One might also give only the range of these 
numbers; this is done by indicating that the value is a 
range : 

Pc(operation-time: 4 - 16 ps). 

*There is no difficulty distinguishing this use from the use of 
slash as division sign-the latter takes priority, since i t  is the 
more specific use of the slash. 
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Similarly, one could have given typical and average values whenever desired, is that it keeps the number 
times (under some assumed frequency mix of instruc- of attributes that have to be defined small. 
tions) : 

Pc(operation-times : 4 ps) A PMS example using the DEC PDP-8 
Pc(operation-times : average : 8.1 ps). 

The advantage of this convention, which permits Figure 3 gives the detailed PMS diagram of an 
descriptions of values to be used in place of actual actual, small, general purpose computer, the DEC 

'DM01 Data 

M u l t i p l e x o r ;  

r a d i a l  : 

from: 7 P,K; so: MP I 
- ~ ~ - ~ ~ ~ e l e t ~ ~ e ;  10 char/s; 8 b/char; 64 char) - 

K T(card; reader; 2001800 card/min) + 

K-T(card; punch; 100 card/min) + 

char/col  
2 

d isp lay ;  area: 10 r I 0  i n  15 x 5 in2]- 

K-T(l ight; pen)<d 

r (  T(Dataphone; 1.2 -4.8 kb /s ) -  

K ( # l  :lo)-L!analog; ou tpu t ;  0 - -10 v o l t s ) +  

K-5-;(#0:63; analog; inpu t ;  0 - -10 v o l t s ) +  

-I(-- S- K(#0:63; Teletype; 110, 180 b/s)-  

;JS/W; l eng th :  260 f t ;  350 char / in ;  3 d c h a r  I - 

P(display:  '338) T(#O:3; CRT; d isp lay :  area: 10 x I 0  in2 ) -  

L 1 ~ ( # 0 : 3 ;  l i g h t ;  pen)+ 

T 
T(#0:3; push but tons;  console)+ 

l ~ c [ ~ . a b o r a t o r y  T.console 

Instrument Ms #0:1; LINC,tape; addressable magnetic tape: - 
Computer/L INC [ 6.25 kw/s: 2" w 

T(U0: 15; knobs, analog; inpu t )+  
2 

I 
T(CRT; d isp lay ;  5 X 5 i n  1-r 
T ( d i g i  t a l  ; Input ,  ou tpu t ) -  

~ ( ' ~ a t a  Terminal Panel; d i g i t a l ;  input .  ou tpu t ) -  

'Mp(core; 1.5 l d w ;  4096 w; (12 + I )b)  

a ~ ( l ~ e m o r y  Bus) 

'PC(I - 2  " / i n s t r u c t i o n :  data: w ,  i.bv; 12 b/w: M.procrssor s t a t e f 2 '  e W 3 1 )  w: technoloay: t r a n s i s t o r s ;  

antecedents: POP-5; descendants; PDP-8s. PDP-81, PDP-L) 
K 2 

' ~ ( ' 1 / 0  Bus; from; PC; to; 64 K) 

'K!I - 4 i n s t r u c t i o n s ;  H .bu f fe r ( l  char-2 w)) 

Figure 3-DEC LINC-8-338 PMS diagram 
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LINC-8-338, which is a PDP-8 with a LINC processor 
and a type 338 display processor. We will concentrate 
on the notation, rather than discussing substantive 
features of the system. A simplified PMS diagram of 
the system shows its essential structure: 

This shows the basic Mp-PC-T structure of a C with 
the addition of secondary memory (Ms) and two 
processors, one of which, Pc('LINC), has its own Ms. 
Two switches are used: the I/O-bus which permits 
access to all the devices, and a direct access path to 
Mp via PC for high data rate devices. There %re many 
other switches in the actual system as one can see 
from Figure 3; for example, Mp is really 1 to 8 sepa- 
rate modules connected by a switch S to PC. Also 
there are many T's connected to the input-output 
switch, S, which we collapsed as a single compound T ;  
and similarly for S(direct memory access). 

Consider the Mp module. The specifications assert 
that it is made with core technology, that its word 
size is 13 bits (12 data bits plus one other with a 
different function); that its size is 4096 words; and 
that its operation time is 1.5 ps. We could have written 
the same information as: 

M(function: primary; technology :core; operation-time : 
1.5 ps; size: 4096 w; word: (12 + 1) b) 

In Figure 3 we wrote only the values, suppressing the 
attributes, since moderate familiarity with memories 
permits an immediate inference about what attributes 
are involved. As another example, we did not specify 
the function of the additional bit in the word when 
we wrote (12 + 1) b. Informed readers will assume 
this to be a parity bit, since this is the common reason 
for having an extra bit in a word. If the extra bit had 
some unusual function, then we would have needed to 
define it. That is, in the absence of additional informa- 
tion, the most common interpretation is to be as- 
sumed. 

In fact, we could have been even more cryptic and 
still communicated with most readers: 

M.core (1.5 ps/w; 4 kw; 12 b), 

corresponding to the phrase, "A 12 bit, 1.5 ps, 4k 

core store". 4 ltw stands for 4 X 1024 = 4096; how- 
ever, if someone who was less familiar took it to be 
4 X 1000 = 4000 no real harm would be done. 

Consider the magnetic tapes for PC. Since there are 
eight possible tapes that make use of the same con- 
troller, K, through a switch, S, we label them #O 
through #7. Actually, # is an abbreviation for the 
index attribute whose values are integers. Since the 
attribute is a unique character, we do not have to 
write #:3 (although we could). The additional param- 
eters give information about the physical attributes of 
the encoding. These are alternative values and any 
tape has only one of them. A vertical bar (I) indicates 
this (as in BNF notation for grammars). Thus, 751112 
in/s says that one can have a tape with a speed of 75 
inches per second or one with 112 inches per second, 
but not a tape which can be switched dynamically to 
run at  either speed. 

For many of the components no further information 
is given. Thus, knowing that M.magnetic,tape is 
connected to a control and from there to the PC tells 
generally what that K does. I t  is a "tape controller" 
which evokes all the actions of the tape, such as read, 
write, rewind; and therefore these actions do not have 
to be done by PC. The fact that there is only one K 
for many Ms's implies that only one tape can be 
accessed at  a time. Other information could be given, 
although that just provided is all that is usual in 
specifying a controller in an overall description of a 
system. 

We have used several different ways of saying the 
same thing in Figure 3 in order to show the range of 
descriptive notations. Thus, the 64 Teletypes are 
shown by describing a single connection through a 
switch and putting the number of links in the switch 
above the connecting line. 

Consider, finally, the PC in Figure 3. We have given 
a few parameters: the number of data types, the num- 
ber of instructions, and the number of interrupts. 
These few parameters hardly define a processor. Several 
other important parameters are easily inferred from 
the Mp. The basic operation time in a processor is a 
small multiple of the read time of its Mp. Thus it is 
predictable that PC stores and reads information in 
2 X 1.5 ps (one for instruction fetch, one for data 
fetch). Again, where this is not the case (as in the CDC 
6600) it is necessary to say so. Similarly, the word 
size in the PC is the same as the word size of the Mp- 
12 data bits. More generally, the PC must have instruc- 
tions that take care of evoking all the components of 
the PMS structure. These instructions of course do 
not use the switches and controls as distinct entities; 
rather, they speak directly to the operation of the 
M's and T's connected via these switches and controls. 
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Other summary parameters could have been given 
for the PC. None would come close to specifying its 
behavior uniquely, although to those knowledgeable 
in computers still more can be inferred from the 
parameters given. For instance, knowing both the 
data types available in a PC and the number of instruc- 
tions, one can come very close to predicting exactly 
what the instructions are. Nevertheless, the way to 
describe a PC in full detail is not to add larger and 
larger numbers of summary parameters. I t  is more 
direct and more revealing to develop a description a t  
the level of instructions, which is the ISP description. 

In  summary, a descriptive scheme for systems as 
complex and detailed as digital computers must have 
the ability to range from extremely complete to highly 
simplified descriptions. It must permit highly com- 
pressed descriptions as well as extensive ones and 
must permit the selective suppression or amplification 
of whatever aspects of the computer system are of 
interest to the user. PMS attempts to fulfill these 
criteria by providing simple conventions for detailed 
description with additional conventions that permit 
abbreviation and abstractions, almost without limit. 
The result is a notation that may seem somewhat 
fluid, especially on first contact in such a brief intro- 
duction as this. But once assimilated, PMS seems to 
allow some of the flexibility of natural language within 
enough notational controls to enhance communication 
considerably. 

ISP LEVEL OF DESCRIPTION 

The behavior of a processor is determined by the 
nature and sequence of its operations. This sequence 
is determined by a set of bits in Mp, called the pro- 
gram, and a set of interpretation rules, realized in the 
processor, that specify how particular bit configurations 
evoke the operations. Thus, if we specify the nature 
of the operations and the rules of interpretation, the 
actual behavior of the processor depends solely on the 
particular program in Mp (and also on the initial state 
of data). This is the level at  which the programmer 
wants the processor described-and which the pro- 
gramming manual provides-since he himself wishes to 
determine the program. Thus the ISP (Instruction 
Set Processor) description must provide a scheme for 
specifying any set of operations and any rules of 
interpretation. 

Actually, the ISP descriptive scheme need only be 
general enough to cover some broad range of possi- 
bilities adequate for past and current generations of 
machines along with their likely descendants. As with 
the PMS level, there are certain restrictions that can 

be placed on the nature of a computer system, spe- 
cializing it from the more general concept of a discrete 
state system. For the PMS level, it processes a medium, 
called information; it is a system of discrete components 
linked together by information transfers; and each 
component is characterized by a small set of operations. 
Similarly, for the ISP level we can add two more such 
restrictions, which will in turn provide the shape of 
its descriptive scheme. 

The first specialization is that a program can be 
conceived as a distinct set of instructions. Operation- 
ally, this means that some set of bits is read from the 
program in Mp to a memory within P, called the 
instruction register, M.instruction/M.i. This set of 
bits then determines the immediately following se- 
quence of operations. Only a single operation may be 
determined, as in setting a bit in the internal state of 
the P; or a substantial number of operations may be 
determined, as in a "repeat" instruction that evokes 
a search through Mp. In a typical one or two address 
machine the number of operations per instruction 
ranges from 2 to 5. In  any event, after this sequence 
of operations has occurred, the next instruction to be 
fetched from Mp is determined and obtained. Then, 
the entire cycle repeats itself. 

The above cycle of activity is just the interpretation 
cycle, and the part of the P that performs it is the 
interpreter. The effect of each instruction can be ex- 
pressed entirely in terms of the information held in 
memories at  the end of the cycle (plus any changes 
made to the outside world). During execution, opera- 
tions may have internal states of their own as sequen- 
tial circuits which are not represented as bits in memo- 
ries. But by the end of the interpretation cycle, what- 
ever effect is tjo be carried on to a later time has been 
staticized in bits in some memory.* 

The second additional specialization is on the data 
operations. A processor's total set of operations can be 
divided into two parts. One part contains those neces- 
sary to operate other components given in the PMS 
diagram-links, switches, memories, transducers, etc. 
The operations associated with these components and 
the extent to which they can be indirectly controlled 
from P are highly constrained by the basic nature of the 

* This description holds true for a P with a single active control 
(the interpreter). Some P's (e.g., the CDC 6600) have several 
active controls and get involved in "overlapping" several in- 
structions and in reordering operations according to the data 
and devices available. With these, a more complex statement 
is required to express the same general restriction we have been 
stating for simple P's: that the program can .be decomposed into 
a sequence of bit sets (the instructions), each of which has local 
cont,rol over the behavior of the P for a limited period of time, 
with all inter-instruction effects being stat,icized as bits in M's. 
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components and their controls. The second part con- 
tains those operators associated with a processor's D 
component. So far we have said nothing at  all about 
them, except to exclude them completely from all PMS 
components except P. These are the operations that 
produce bit patterns with new meaning-that do all 
the "real" processing-or changing of information.* 
If it weren't for data operators, the system would 
only just transmit information. As we noted in our 
original definitions, a P (including a D) is the only 
component capable of directly changing information. 
A P can create, modify, and destroy information in a 
single operation. As we noted earlier, D's are like the 
primitive components in an analog computer. Later, 
when we express instruction sets as simple arithmetic 
expressions, the D's are the primitive operators, e.g., 
+, -, X , /, X2n, A , V , @, and concatenation (n), 
which are evoked by the instruction set interpreter 
part of a processor. 

The specialization is that all the data operations 
can be characterized as working on various data-types. 
For example, there is a data-type called the signed- 
integer, and there are data operations that add two 
signed-integers, subtract them, multiply them, take 
their absolute value, test for which of two is the greater, 
etc. A data-type is a compound of two things: the 
referent of the bit pattern (e.g., that this set of bits 
refers to an integer in a certain range); and the repre- 
sentation in the bit pattern (e.g., that bit 31 is the 
sign, and bits 30 to 0 are the coefficients of successive 
powers of 2 in the binary representation of the integer). 
Thus, a processor may have several data-types for 
representing numbers : unsigned-integers, signed-inte- 
gers, singletprecision-floating-point, double-precision- 
floating-point, etc. Each of these requires distinct 
operations to process it. On occasion, operations for 
several data-types may all be encoded into a single 
instruction from the programmer's viewpoint, as when 
there is an add instruction with a data-type sub-field 
that selects whether the data is fixed or floating point. 
The operations are still separate, no matter how 
packaged, and so their data-types remain distinct. 

With these two additional specializations-instruc- 
tions and data-types-we can define an ISP description 

* I n  principle, this view that only D components do "real" 
processing is false. I t  can be shown that a universal Turing 
Machine can be built from M, S, L, and K components. The 
key operation is the write operation into M, which suffices to 
construct arbitrary bit patterns under suitably controlled 
switches. Hence, arbit,rary data operations can be built up. The 
stated view is correct in practice in that the data operations 
provided in a P are highly efficient for their bit transformations. 
Only the foolish add integers in a modern computer by table 
look up. 

of a processor. A processor is completely described at  
the ISP level by giving its instruction-set and its 
interpreter in terms of its operations, data-types and 
memories. 

Let us first give the instruction-set. The effect of 
each instruction is described by an instruction-ex- 
pression, which has the form: 

condition + action-sequence. 

The condition describes when the instruction will be 
evoked, and the action-sequence describes what trans- 
formations of data take place between what memories. 
The right arrow (--+) is the control action (of a K) of 
evoking an operation. 

Since all operations in a computer system result in 
modifications of bits in memories, each action in a 
sequence has the form: 

memory-expression + data-expression 

The left arrow ( t )  is the transmit operation of a 
link, and corresponds to the ALGOL assign operation. 
The left side must describe the memory location that 
is affected; the right side must describe the informa- 
tion pattern that is to be placed in that memory 
location. The details of data-expressions and memory 
expressions are patterned on standard mathematical 
notation, and are communicated most easily by ex- 
amples. The same is true of the condition, which is a 
standard expression involving boolean values and 
relations among memory contents. 

There are two important features of the action- 
sequence. The first is that each action in the sequence 
may itself be conditional; i.e., of the form, "condition 
-+ action-sequence." The second is that some actions 
are sequentially dependent on each other, because the 
result of one is used as an input to the other; on other 
occasions a set of actions are independent, and can 
occur in parallel. The normal situation is the parallel 
one. For example, if A and B are two registers, then 

exchanges the contents of A and B. When sequence is 
required, the term 'next' is used; thus, 

( A t  B; next B + A ) ;  

transfers the contents of B to A and then transfers it 
back to B, leaving both A and B holding the original 
contents of B (equivalent to A +- B). 

An ISP example using the DEC PDP-8 PC 

The memories, operations, instructions, and data- 
types all need to be declared for a processor. Again 
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these are most easily explained by example, although is a memory called AC, with 12 bits, labeled from 0 to 
full definitions exist (Bell and Newell, 1970). Conse- 11 from the left. Comments are given in italics*-in 
quently, let us examine the ISP description of the PC this case that AC is called the accumulator (by the 
of the PDP-8, given in Figure 4. designers of the PDP-8). Alternatively, we could have 

used the alias or abbreviation convention: 
Processor state AC (0 : 11 j/Accumulator(O : 11 ). 
We first need to specify the memories of the PC in 

detail, providing names for the various bits. Thus, *There are a few features of the notation, such as the use of 
italics, which are not easily carried over int,o current computp 
character sets. Thus, the ISP of Figure 4 is a publicatiori language. AC(0: 11) the accumulator 

DEC PDP-8 ISP Descr ipt ion 

PC State 

AC4: I  I> 

L 

PC4:  I I> 

Run 

I n t e r r u p t s t a t e  

IO~ulse, l ;  IO&ulseJ; 10+ulse& 

Mp State 
Extended memory i s  not included. 

n[o:7777,1(o:1 I> 

PageJl[O: l77,kO:l I> :- H[O: 177,]4: l l> 

Auto,index[O:7]4: I I> :- PagegClO,: 1 7 8 ] 4 :  1 

Accunu Zator 

Link bit/AC extension for o v e r f l m  and carry 

Program Countel. 

I when PC i s  i ~ t e r p r e t i n g  instructions or "running" 

I when PC can be interrupted; under programed ca t roZ  

I0 pulses t o  10 devices 

special army o f  d irec t ly  addressed memory registers 

special army when addressed indirec t ly , i s  incremented 

PC Console State 
Keys for s tar t ,  stop, continue, e-ns (load from memory), and deposit (store i n  memory) are not included. 

Oata switches4:11> data entered v ia  console 

Instruction F o m t  

I n s t r u c t l o n / l d :  11> 

o p d  : 2> :- i d : 2 >  

i n d i r e c t g i t / i b  :- id> 

p * 9 e 9 9 i  t / p  :- i<4> 

page.,address4:6> := id:Il> 

t h i s 4 a g e d : 4 >  :- PC04:4>  

P C ' 4 :  1 I> :- (PC<O:II> 

I O & e l e c t d : Y  :- i<j:[b 

i o g l g i  t :- i<l I> 

i o g 2 Q l  t :- i<I@ 

i o g b J ~ 1  t :- I+> 
S M  :- 1<5> 

sza :- id> 
sn l :- i<h 

op code 

0, d irec t ;  1 indirect  menory reference 

0 ee lec ts  page 0; 1 eelects t h i s  page 

selects a T or Ms device 

Effective Address ~a l kZa t ion  Process 

z<O:II> :- ( 

-,i b + z"; 

i b  ( lo8  r z" 17 ) + (n[zl0] ,n[zw] + I ; next) ;  
8 

I b + n[zM]) 

zl<O:l l> :- (7 i b  -, zll; i b  +n[zU]) 

z l W :  l I> :- (page,D,bl t + t h  i ~dagegpage~address  ; 

-page,O,b i t + hpage,sddress ) 

these 3 b i t s  con t rd  the se lec t ive  genemtion o f  -3 vol t s ,  
0.4 ps pulses t o  1/0 devices 

p b i t  for skip on minus AC, opemte 2 group 

p b i t  for skip on s e m  AC 

p b i t  for skip on .ton zero Link 

auto indesing 

direct  addresi. 

u microcoded instruction or inetzwction b i t ( 8 )  within an instruction 
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Instruction Interpretation Pmcess 

Run A 1 Clnterrupt,request A I n t e r r u p ~ s t a t e )  + ( 

i n s t r u c t i o n  cH[PC]; PC *PC + 1; next 

Run A Interrupturequest A In te r rup t -s ta te  + ( 

H[O] +PC; Interrupt,state + 0 ;  PC + I )  

Instruction Se t  and Instruction Execution Process 

Instruction,executlon :- ( 

and (:- op - 0) + (AC c AC A H[z]); 

tad  (:- op - 1) + (LoAC t L o A C  + H[z l ) ;  

i s z  ( : -  op - 2) -+ (Hlz ' ]  + HCzl + I; next 

( N z ' l  - 0 1  + PC t Illr 
dca ( : -op - 3) + ( Y z l  + A t ;  A c t - 0 ) ;  

jms (:- op - 4) + (H[zl +PC; next PC + z  + 1 ) ;  
jmp (:- op - 5 )  -, (PC c 2); 

i o t  (:- op - 6 )  + ( 

iapl,bit + IO,puIs&l c I; next 

lo,p2Jit * lO&ulse> +I; next 

i o U p 4 g i t  -, IOgulse,4 + I ) ;  

opr (:* op - 7) +Operate,execution 

) 

no interrupt  interpreter 

fetch 

execute 

interrupt  in terpre ter  

ZogicaZ and 

two ' s  complement add 

index and skip i f  zero 

deposit and clear AC 

t o  subroutine 

jwnp 
v i n  out transfer,  microprogmmned t o  genemte up t o  3 pulses 

t o  an i o  device addressed by r0,select 

the operate instruction i s  defined below 
end Instruction execution 

Opemte Instruction Se t  
h e  micmpmgramned operate instructions: operate group I ,  opemte group 2, and extended ari thmetic are defined as a separate 
instruction s e t .  

Operate-execut ion :- ( 

c l a  (:- i<4> - 1) -, (At + 0); clear AC. Comnon t o  aZZ opemte instructions.  
opr-l  (:- I& - 0) -+ ( opemte group I 

c l l  (:- i<b - 1) -D (L + 0);  next y clear l ink 
cma (:- id> - 1) -+ (AC +, AC); u comp lement AC 
cml (:- I(]>- I )  + ( L  clL); next IL complement L 

lac  (:- i<ll>- I )  - + ( L a c  + L a c  + I ) ;  newt y increment AC 
ra t  (:- idl :10> - 2) -1 (LWC +LoAC x 2 { ro ta te ) ) ;  v rotate l e f t  
r t l  (:- i<B:lO> - 3) + ( L a c  + L a c  X z2 [ r o t a t e l ) ;  y rotate twice l e f t  
r a r  (:- iQ):10> 1 4) + ( L a c  + L a c  / 2 [ ro ta te ) ) ;  y rotate right  
rtr  (:- i<s : lO> - 5 )  + ( L a c  + L a c  / 22 [ r o t a t e l ) ) ;  y rotate twice right  

oprJ (:- 1<3,11> - 10) + ( operate group 2 

sk ip  cond l t l on  @ ( I < &  - 1 )  -, (PC t PC + 1);  next v PC,' skip t e s t  
sklp cond l t l on  :- ((sma A (AC < 0))  v (sza A (At - 0))  v (sn l  A L ) )  

os r  (:= I<p - 1 )  + (AC t ACv Data switches); P "or0 switches 
h l t  (:= ! d o > -  1 )  + (Run t o ) ) ;  P hal t  or stop 

EAE t:- 1 0 , 1 1 > -  11) +EAF~~nstruct iongxecution)  optional EAE description 

Figure 4-l)EC PIIP-8 ISP Description 

AC corresponds to an actual register in the PC. How- Having defined a second memory, L (which has only 
ever, the ISP does not imply any particular implemen- a single bit), one could define a combined register, 
tation, and names may be assigned to various sets of LAC, in terms of L, and AC, as: 
bits purely for descriptive convenience. The colon is LAC(L, 0 : l l )  := LOAC. 
used to denote a range or list of vslues. Alternatively, 
we could have listed each bit, separating the bit names The colon-equal (:=) is used for definition, and the 

by commas, as: middle square box ( 0 )  denotes concatenation. Note 
that the bit named L of register LAC corresponds to 

AC(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11). the I bit L register. 
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Memory state 

In dealing with addressed memory, either Mp or 
various forms of working memory within the processor, 
we need to indicate multidimensional arrays. Thus, 

gives the primary memory as consisting of 7777* (i.e., 
base 8) words of 12 bits each, being addressed as 
indicated. Such an address does not necessarily reflect 
the switching structure through which the address 
occurs, though it often will. (Needless to say, it re- 
flects only addressing space, and not how much actual 
M is available in a PMS structure.) In general, only 
memory within the processor will occur as operands of 
the processor's operators. The one exception is primary 
memory (Mp), which is defined as a memory ex- 
ternal to a P,  but directly accessible from it. 

In writing memories it is natural to use base 10 for 
all numbers and to consider the basic i-unit of the 
memory to be a bit. This is always assumed unless 
otherwise indicated. Since we used base S numbers 
above for specifying the addressing range, we indicated 
the change of number base by a subscript, in standard 
fashion. If a unit of information other than the bit 
were to be used, we would subscript the angle brackets. 
Thus, 

Mp[0: 77778](0: I),, 

reflects the same memory. The choice carries with it, 
of course, some presumption of organization in terms 
of base 64 characters-but this would show up in the 
specification of the operators (and is not true, in fact 
of the PDP-8). We can also have multi-dimensional 
memories (i.e., arrays), though no examples are used 
in Figure 4. These just add the extra dimensions with 
an extra pair of brackets. For example, a more precise 
description would have used : 

to mean S memory fields, each field with 32 pages, 
each page with 128 words and each word with 12 bits. 

Instruction format 

I t  is possible to have several names for the same 
set of bits; e.g., having defined instruction (0: 11) we 
define the format of the instruction as follows: 

op(0 : 2) : = instruction (0: 2) 
indirectubit : = instruction(3) 
pageU0,bit : = instruction(4) 
page,address(O : 6) : = instruction(5 : 11 ) 

The colon-equal (: =) is used to assign names to various 
parts of the instruction. In effect, this is a definition 
equivalent to the conventional diagram for the in- 
struction : 

Notice that in page,address the names of all the bits 
have been shifted, e.g., page,address(4) : = instruc- 
tion(9). 

In general, a name can be any combination of upper 
and lower case letters and numerals; not including 
names which would be considered numbers (integers, 
mixed numbers, fractions, etc.). A compound name 
can be sequences of names separated by spaces ( ) or 
a hyphen. In  order to make certain compound names 
more recognizable, a space symbol (& may optionally 
be used to signify .the non-printing character. 

0 P 

The instruction set 

page address 

With all the registers defined, the instructions can 
be given. These are shown on the second page of Figure 
4. The second page is a single expression, named 
Instruct io~execution,  which consists of a list of 
instructions. These are listed vertically down the 
page for ease of reading. Each instruction consists of a 
condition and an action sequence, separated by the 
condition-arrow (+). In this case the condition is an 
expression of the form (op = octal-digit). Since op is 
instruction(0:2), this expresses the condition that the 
operation code of the instruction has a particular 
value. Each condition has been given a name in pass- 
ing; e.g., 'and' is the name of (op = 0). This provides 
the correspondence between the operation code and 
the mnemonic name of the operation code. If this 
correspondence had been established elsewhere, or if we 
didn't care what numerical operation code the "and" 
instruction is, we could have written: 

0 3 4 5  1 1  

I t  pageuOUbit 

indirec t ub i t  

and + (AC + AC A M[z]) 

We would not have known what condition the name 
'and' stood for, but could have surmised (with little 
difficulty) that it was simply an equality test on the 
operation code. Or we could define it elsewhere as: 

and : = (op = 0) 
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Most generally the form of an instruction is written as: 

Here, we simultaneously define the action of the tad 
instruction, its name, an abbreviation for the name, 
and the conditions for tad's execution. The first paren- 
theses are, in effect, a remark to allow an in-line 
definition. 

The instructions in the list constitute the total 
instruction repertoire of the PC. Since all the condi- 
tions are disjoint, one and only one condition will be 
satisfied when a given instruction is interpreted, 
hence one and only one action sequence will occur. 
Actually, all operation codes might not be present, so 
there would be some illegal op codes that would evoke 
no action sequence. The act of selection is usually 
called operation decoding. Here, ISP implies no par- 
ticular mechanism by which this is carried out. 

It might be wondered why the conventions are not 
more stylized-e.g., some sort of table with mnemonic 
names in one column, bits of the operation code in 
another, etc. Though standard processors would fit 
such a stylized scheme, many others would not-e.g., 
microprogram processors. By making the ISP descrip- 
tion a general expression for evoking action-sequences 
we obtain the generality needed to cover all varia- 
tions. (Indeed, you will notice that the PDP-8 ISP is a 
single expression, and that it incorporates two micro- 
programmed instructions with no difficulty.) 

For the action-sequence standard mathematical 
infix notation is used. Thus we write 

This indicates that the word in Mp at  address z (deter- 
mined by the expression on page 1 of Figure 4) is 
anded with the accumulator and the result left in the 
accumulator. Each processor will have a basic set of 
operations that work on data-types of the machine. 
Here the data-type is simply the 12 bit word viewed 
as an array of bits. 

Operators need not necessarily involve memories 
actually within the PC (the processor state). Thus, 

expresses a change in a word in Mp directly. That 
this must be mechanized in the PDP-8 by means of 
some temporary register in PC is irrelevant to the 
ISP description. 

We also use functional notation, e,g., 

replaces the contents of the AC with its absolute value. 

Effective address calculation 

In the examples just given we used z as the address 
in Mp. This is the effective address (simplified) and is 
defined as a conditional expression (in the manner of 
ALGOL or LISP) : 

z(0: 11) : = (m indirect-bit -+ z'; 

indirect-bit -+ Mp[z']) 

The right arrow (-+) is the same conditional sign used 
in the main instruction, similar to the "if . . . then 
. . ." of ALGOL. The parentheses are used to indicate 
grouping in the usual fashion. However, we arrange 
expressions on the page to make reading easier. 

As the expression for z shows, we permit conditional 
within conditionals, and also the nesting of definitions 
(z is defined in terms of a variable z'). Again, we should 
emphasize that the structure of such definitions may 
reflect directly the underlying hardware organization, 
but i t  need not. When describing existing processors 
the ISP description often does or can be forced to 
reflect the hardware. But if one were designing a 
processor, then ISP expressions would be put down as 
design objectives to be implemented in a register 
transfer structure, which might differ considerably. 

Special note should be taken of the opr instruction 
(op = 6) in Figure 4, since it provides a micropro- 
gramming feature. There are two separate options 
depending on instruction(3) being 0 or 1. But common 
to both of these is the operation of clearing the AC 
(or not), associated with instruction (4). Then, within 
one option (instruction(3) = 0) there are a series of 
independently executable actions (following the clear- 
ing of L); within the other (instruction(3) = I) ,  
there are three independently settable control actions. 
The nested conditionals and the use of 'next' to force 
sequential behavior make it easy to see exactly 
what is going on (in fact a good deal easier than de- 
scribing it in natural language, as we have been doing). 

The instruction interpreter 

From the hardware point of view, an interpreter 
consists of the mechanisms for fetching a new instruc- 
tion, for decoding that instruction and executing the 
operations so designated, and for determining the 
next instruction. A substantial amount of this total 
job has already been taken care of in the part of the 
ISP that we have just explained. Each instruction 
carries with it a condition that amounts to one frag- 
ment of the decoding operation. Likewise, any further 
decoding of the instruction that might be done in 
common by the interpreter (rather than by the indi- 
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vidual operation circuits) is implied in the expressions 
for each instruction, and by the expression for the 
effective address. The interpreter then fetches the 
next instruction and executes it. 

I n  a standard machine, there is a basic principle 
that defines operationally what is meant by the "next 
instruction." Normally the current instruction address 
is incremented by one, but other principles are used 
(e.g., on a processor with a cyclic Mp). In addtion, 
several specific operations exist in the repertoire that 
can affect what program is in control. The basic prin- 
ciple acts like a default condition-if nothing specific 
happens to determine program control, the normal 
"next" instruction is taken. Thus, in the PDP-8 we 
get an interpretation process that is the classic fetch- 
execute cycle : 

Run -+ (instruction +- Mp[PC]; PC + PC + 1; 

next Instruction,execution) 

The sequence is evoked so long as Run is true (i.e., 
its bit value is I).  The processor will simply cycle 
through the sequence, fetching, t,hen executing the 
instruction. In the PDP-8 there exists a halt operation 
that sets Run to be 0, and the console keys can, of 
course, stop the computer. I t  should be noted t,hat 
this ISP description does not include console behavior, 
although it could. 

The ISP description does not determine the way the 
processor is to be organized t'o achieve this sequencing, 
or to take advantage of the fact that many instructions 
lead to similar sequences. All it does is specify what 
operations must be carried out for a program in Mp. 
The ISP description does specify the actual format of 
the instruction and how it enters into the total opera- 
tion, although sometimes indirectly. For example, in 
the case of the and operation (op = O), the definition 
of AC shows that the AC does not depend on the 
instruction and the definition of z shows that z does 
depend on other fields of the instruction (indirect,bit, 
page,O,bit, page,address). Likewise, the form of the 
ISP expression shows that AC and PC both enter into 
the instruction implicitly. That is; in the ISP descrip- 
tion all dependence on memory is explicit.* 

Data-types and data operations 

Each data-type has a set of operations that are 
proper to it. Add, subtract, multiply and divide are 
all proper to any numerical data-type, as well as 
absolute value and negation. Xot all of these need 
exist in a computer just because it has the data-type, 
since there are several alternative bases, as well as 
some levels of completeness. For instance, notice that 
the PDP-8 first of all does not have multiply and 
divide (unless one has its special option), thus having a 
relatively minimal level of arithmetic operations; and 
second, it does not have a subtract operation, using a 
two's complement add, which permits negation (-AC) 
to be accomplished by complementation (AAC) 
followed by add 1. 

The PDP-8, unlike larger C's, does not have several 
data representations for what is, externally considered, 
the same entity. An operator that does a floating add 
and one that does an integer add are not the same. 
However, we denote both by the same symbol (in 
this case, +), indicating the difference parenthetically 
after the expression. Alternatively, the specification 
of the data-type can be attached to the data. Thus, 
in the IBM 7094 we would see the following add 
instructions : 

Add/ADD t (AC t AC + M[e]); 
Add and Carry Logical/ACL -+ (AC + AC + M[e]{sl)). 

Floating add/FAD -+ (AC +- AC + M[e]{sf} ) ; 
Un-normalized floating add/UFA -+ 

(AC t AC + M[e]{suf) ) ; 

Double precision floating add/DFAD -+ 

(ACMQ +- ACMQ + M[elOM[e + l l{dfl) ;  

Double precision un-normalized floating add/DUFA -+ 
(ACMQ t ACMQ + M[e]uM[e + l l{duf) )  

The braces { ) differentiate which operation is 
being performed. Thus above, the data-type* is en- 
closed in the braces and refers to all the memory 
elements (operands) of the expression. Alternatively, 
we also use braces as a modifier to signify the encoding 
of the i-unit. For example, a fixed point to floating 
point data conversion operation would be given: 

* This is not correct, actually. In physically realizing an ISP 
description, additional memories may be utilized (they may even 
be necessary). I t  can be said that the ISP description has these 
memories implicitly. However, it is the case that a consistent 
and complete description of an ISP can be made without use 
of these additional memories; whereas with, say, a single address 
machine, it does not seem possible to describe each ir~struction 
without some reference to the implicit memories-as we see in the 
effective address calculatior~ procedures where definitions look 
much like registers. 

We also use the braces as a modifier for the operation 
type. For example, shifting (left or right) can be a 

* The conventior~s for naming data-types is a co~lcatenatiorl of 
precision, a name and a structure. Examples irlclrtde i/integer; 
di/double integer; div/doable integer vector; single floating/sf; 
suf/single urmormalized floating; bv/boolean vector; ch.string/ 
character string. 
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multiplication or division by a base, but it is not 
always an arithmetic operation. In the PDP-8, for 
instance, we had 

LOAC + LOAC X 2(rotate} ; 

where the end bits L and AC(l1) are connected when 
a shift occurs (the operator is also referred to as a 
circular shift), or equivalently 

(LOAC + LDAC X 2; AC(l1) + L). 

In  general, the nature of the operations used in 
processors are sufficiently familiar that no definitions 
are required, and they can all be taken as primitive. 
I t  is only necessary to have agreed upon conventions 
for the different data representations used. In essence, 
a data-type is made up recursively of a concatenation 
of subparts, which themselves are data types. This 
concatenation may be an iteration of a data-type to 
form an array. 

If required, an operation can be defined in terms of 
other (presumably more primitive) operations. I t  is 
necessary, of course, first to define the data format 
explicitly (including perhaps some additional memory). 
Variables for the operands are permitted in the natural 
way. For example, binary single precision floating 
point multiplication on a 36 bit machine could be 
defined in terms of the data fields as follows: 

sf mantissa/mantissa : = (0 : 27) 
sf sign/sign : = (0) 
sf exponent/exponent : = (28 : 35) 
sf exponent,sign := (28) 
xl  + x2 X x3{sf) := (XI mantissa := x2 man- 

tissa X x3 mantissa; 
xl  exponent := x2 ex- 

ponent + x3 exponent; next 
x l  : = normalize(x1) {sf) ) 

where normalize is: 

xl  +- normalize(x2) (sf} : = ( 
(xl mantissa = 0) -+ (xl exponent : = 0) 
(x2 mantissa # 0) A (x2(0) = x2(1)) -+ ( 

xl  mantissa := x2 mantissa X 2; 
xl  exponent : = x2 exponent-1 ; next 
x l  : = normalize (x2){sf})) 

Three additional aspects need to be noted with 
respect to data-types; two substantive, one notational. 
First, not everything one does with an item of data 
makes use of all the properties of its data-type. For 
example, numbers have to be moved from place to 
place. This operation is not a numerical operation, 
and does not depend on the item being a number. 
Second, one can often embed one kind of operation in 
another, so as to coalesce- data-types. An example is 

encoding the Mp addresses into the same integer 
data-type as are used for regular arithmetic. Then 
there need be no separate data-type for addresses.* 

The notational aspect is our use in ISP of an mne- 
monic abbreviation scheme for data-types. We have 
already used sf for single-precision-floating-point. More 
generally, an abbreviation is made up of a letter show- 
ing the length, a letter showing the type, and a letter 
showing the structure. The simple naming convention 
does not take into account all we know about a data- 
type. The information carrier for the data is only 
partially included in the length characteristic. Thus 
the carrier should also include the data base and the 
sign convention for representing negative numbers, 
(e.g., sign-magnitude) . 

PMS structure of the CDC 6600 series 

A simplified PMS structure of the C('64001'6600) is 
given in Figure 5. Here we see the C(io; #1: 10) each 
of which cali access the primary memory (Mp) of the 
central computer (Cc). Figure 5 shows why one con- 
siders the 6600 to be a network. Each Cio (actually a 
general purpose, 12 bit C) can easily serve the spe- 
cialized Pio function for Cc. The Mp of Cc is an Ms 
for a Cio because the Cio cannot execute programs 
from this memory. By having a powerful Cio more 
complex input-output tasks can be handled without Cc 
intervention. These tasks can include data-type con- 
version, error recovery, etc. The K's which are con- 
nected to a Cio can also be less complex. 

A detailed PMS diagram for the C('6400, '6416, 
'6500, and '6600) is given in Figure 6. The interesting 
structural aspects can be seen from. this diagram. The 
four configurations, 6400 - 6600, are included just by 
considering the pertinent parts of the structure. That 

~ i o p ~  : 10) 
J u 

per iphery 

Figure A-CDC 6600 PMS diagram (simplified) 

* However logical such a course may seem, it is not always done 
this way. For example, the IBM 7090 (and other members of that 
family) have a 15 bit address data type and a 36 bit integer data 
type, with separate operations for each. 
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M('Barre11 workins: low: 51 hlw:,l @s/w) 

I I T( '0ead S t a r t  Console)- 

~ ( 4  K: 16 HS)-HS~ (#0: 15) 

L(#2,3,4: t o :  'Extended Core Coupler) 

'Mp(core: 1.0 *s/w: 4096 w: 12 b/w) 

"S( t ime m u l t i p l e x :  .2 w s w :  12 b/w) 

3Pc( 'Per iphera l  and Contro l  Processor: #0:9; t ime m u l t i p l e x : . l  *s/w: 1 address / ins t ruc t ion :  

12 b/w; Mps( '~ roqram Counter. Accumulator) 1.2 w / i n s t r u c t i o n )  

4 ~ p ( c o r e :  1.0 ps/w; 4096 w: (5 x 12) b/w) 

 time m u l t i p l e x :  0.1 ~ s / w :  60 b/w) 

"Ms ('Extended Core Storaqe/FCS: 3.2 ws/w: (125952 1 8 )  w: (8  x (60, 1 p a r i t y ) )  b/w) 

7See Chapter 39 f o r  operat ion.  

'Only present i n  CDC 6500 

NO C ( 'Centra l )  i n  CDC 6416: CDC 6500 and CDC 6400 do not  have  coreboar board), separate D's, 

and M ( ' i n s t r u c t i o n  Stack). 

Pc('6600; 15, 30 b / i n s t r u c t i o n :  techno1ogy: t ransis tor :  - 1964: data:  si,bv,w,sf,dl - - 
Mps(f l  i p  f l o p :  -16 w)-S('Swi tchboard) O ( ' S h i f t )  

D('Poolean) 

D(# l  : 2: 'increment) 

D ( 'Branch) 

D('Add: 0.3 ps)  

D('Long Add) 

D(#1:2: M u l t i p l y ;  1 +s) 

- 
D('Div ide:  2.9 *s )  

content  addressable; 

Figure 6-CDC 6600 PMS Diagram 

is, a 6416 has no large PC; a 6400 has a single straight- The implementation of the 10 Cio's can be seen 
forward PC; a 6500 has two PC's; and the 6600 has a from the PMS diagram (Figure 6). Here, only 1 
single powerful PC. The 6600 PC has 10 D's, so that physical processor is used on a time shared basis. Each 
several parts of a single instruction stream can be 0.1 ps a new logical P is processed by the physical P. 
intwpreted in parallel. A 6600 PC also has considerable The 10 Mp's are phased so that a new access occurs 
M.lmffer to hold instructions so that PC need not each 0.1 ps. The 10 Mp's are always busy. Thus, the 
wait for Mp fetches. information rate is (10 X 12) b/ps or 120 megabit/% 
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This structure for shifting a new PC state into position 64 telegraph lines to be connected to a Cio; and 
each 0.1 ps has been likened by CDC to a barrel. Ms(disk) with four simultaneous access ports, each a t  

The T's, K's and M's are not given in the figures, 1.68 megacharls data transfer rate; and a capacity of 
although i t  should be mentioned that the following 168 megachar; a Ms(magnetic tape) with a K(#l:4) 
units are rather unique: a K for the management of and S to allow simultaneous transfers to 4 Ms; the 

COC 6400, 6500, 6600 Centra l  Processor ISP Oescri p t  Ion 

PC State 

P<17:(n Program counter 

k i n  arithmetic registers.  X[I:5], are impl ic i t l y  loaded from 
M p  when A[l:S] are loaded. ~ [ 6 : 7 ]  are impl ic i t l y  stored i n  
Mp when A[6: 71 are loaded. 

B registers are general arithmetic registers,  and can be used 
as index registers.  

Run I i f  interpreting instructions,  not under progmm control. 

EM4 7 : 0> Exit mode b i t s  

Indef i n  I teaperand-rnode :- EH<14> 

The above desoription i s  incomplete i n  that  t h e  above 3 mode's a l u m  a ~ i m  conditions t o  t m p  PC a t  @ERA].  rapping occurs i f  
a alarm condition occurs "and" the mode i s  a one. 

main core memory of 2'' w ,  (256 kwl 

ECS/Extended Core Storage Program can only transfer data between 
M p  and Ma. Program cannot nr executed i n  Ms. 

reference (or relocation) address register t o  map a logical Mp' 
in to  physical Mp 

f ield length - the bourds register which l imi t s  a program's 
access t o  a mnge of Mp' 

reference or relocation register for Me(Eztended Core Stomge) 

f ield length for ECS 

a b i t  denoting a s ta te  when memory,mapping i s  invalid 

Memry Mapping Process 
This process maps or relocates a logical program, a t  location @', and &' , in to  physical M p  and Ms. 

Hpl [X]  := ( (X < F L )  -rHp[X + RAI) ;  logical Mp ' 
(X 2 FL) -r (Run +O; Address&ut&fY range + 1 ) )  

n s D  [XI :- ( ( x  < FLECS) +~SCXI+  RAECSI); logical Me ' 
(X 2 FLECS) + (Run +O; A d d r e s ~ o u t y o f ~ r a n g e  t 1 ) )  

Exchange jump storage aZZocation map a t  Zocntion, n within Mp: 
The following Mp" array i s  reserved when PC s ta te  i s  stored, ad switched t o  another job. The exchange jwnp instruction i n  
a Peripheral and Control Processor enacts the operation: IMp1'+ Up; Mp t Mp"1 .  

Hp"[n]<53:0> := PoA[Olo0000008 

Hp"[n+I ]<53 :0> := RAoA[ l ]oB[I ] 

Hp"[n+2]<53:0> :* FLaA[2joB[2] 

Hp1'[n+3 ]<53:0> := EnoA[3]oB[3] 

Mp"[n+4] := RAECSu4[4]oB[4] 

Mp"[n+S] :- FLECSd[5]oB[5] 

Hp"[n+6]<35:0> := A[6]oB[6] 

MpM[n+71<35:0> := A[ 710B[ 71 

Mp"[n+108:n+178]:= X[O:7] 

Figure 7-CDC 6400, 6500, 6600 Central Processor ISP Description 
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T(direct; display) for monitoring the system's opera- ISP OF  THE CDC 6600 

tion; K's to other C's and Ms's; and conventional The ISP description of the PC is given in Figure 7. 
T(card reader, punch, line-printer, etc.). The PC has a straightforward scientific calculation 

Instruction Format 

atthouqh 30 b i t s ,  most i71structions are 15 b i t s ;  see 
Instrurt ion Interpretat ion Process 

operation code or function 

fmi<s:O> :- fmoi extended op code 

iq:n;  := l n s t r u c t i o n Q 3 : 2 l >  

J-?:0> := i n s t r u c t i o n ~ 0 : 1 8 >  

C.2 : O j  := inst ruct ion<l7:15> 

J k 4  : 0:. :- j& 

~ < 1  7 : O> :=  instruct ion<.l7:0> 

IongJns t ruc t ion  :=  ( ( f m  c l o8 )  v 

(50 , fm - 53) v 

(60 < fm - 63) . I  

(70 < fm . 73)) 
short,instruction :- -. long i n s t r u c t i o n  

spec i f ies  a reg is ter  or an extension t o  op code 

s p e c i f i e s  a reg is ter  

s p e c i f i e s  a reg is ter  

a s h i f t  constant 16 b i t s )  

an 18  b i t  address siae constant 

30 b i t  i n s t m c t i o n  

15 b i t  ins t ruc t ion  

Instruction Interpretat ion Process 
A 15 b i t  ( s h o r t )  or 30 b i t  ( l o n y )  inetruction i s  fetched from Mpl[P]<p x 1 5  + i5 - i : p  x 1 5 '  where p = 3, 2,  1, or 0.  A 30 
h i t  ins t ruc t ion  cannot be stcred across ra or,! bounriaries (or  i n  2 ,  Mp' loca t ions) .  

p i 1  >4 a pointer t o  1 5  b i t  quarter word which has ins t ruc t ion  

p 4 -  p - 1 : next 

(p  - 0 )  A long,instructlon .Run . -0 ;  

(p 1 0)  A long,instruction - ( 

i n s t r u c t i o n  .14:O> ' - M ~ ' [ P I ' ( ~  X 15 + 1 4 ) : ( ~  X 15) .; 
p s-p - I ) ;  next  

Instruction,execution; next 

( p - 0 )  . ( p  3; P . P + 1)) 

Inst  ruct ion L'e t an i Ins t m?t lor. Frecution Process 
Opernn i "etches or s tcres  batween Mp' and X [ i ]  n r m r  1l . i  loa!:ng or storing reg is ters  A [ I ] .  If ( 0  . i .- 61 a fetch from 
:!r,'[,?l i TI , '  . . i ,~ : .  :;' ; ' 2 ( ' 1  7 ::tore i s  ma& t o  , ! + ' I A ~  :I I. Tie Ieszrivt ion Ioes not rieecrihe Ad~ireesYout,of-range case, ,;. ::. t... I : . ,  l ! :'::(, I null o p r n t i o n .  

I ns t ruc t ion .~execu t ion  :- ( 

.'k t A I i 1 r': .A 

U S A ~  + KO (fm - 50) -+ (A [ i  ] 1 - A [ j ]  t K; next  F e t c h d t o r e ) ;  

USA(  ~j + K" ( fm - 51) + (A[I ] t B [ J  1 + K; next  Fetch,Store); 

"SAi XJ + K" (fm - 5 2 )  +(A [ l  I +-X[J ]<17:O> + K; next  ~ e t c h d t o r e ) ;  

ItSAi xJ + ~ k "  (fm - 53) - t ( A [ i  ] t X [ j ] 4 7 : 0 >  + Brk ] ;  next  ~ e t c h ~ ~ t o r e ) ;  

"SAi A.i t Bk" (fm - 54) + (A[ I  ] +A[J ] + B[k]; next  Fetchustore) ; 

I1SAi A j  - Bk" (fm - 55) + (A[! ] + A [ j  ] - B[k 1; next  Fetchustore) ; 

"SAi BJ + Bk" (fm - 551 + ( A [ i ]  c B l J ]  + BLL]; next  Fetch,Store); 

"SAi BJ - Bk" (fm - 57) + (A[ i  3 t B [ j ]  - e[k];  next FetchJtore) ;  

Fetch-Store :- ( 

(0 < i < 6 )  + ( X [ i ]  - t i p l [ A [ i ] ] ) ;  process t o  get operand i n  X or store operand from X when A 

( i  2 6) -t (Hp1 [A [ i ]  + x [ i ] ) )  i s  v r i t t e n  

~LJperationz on B and X 

Set R [ i YSBi 

"SBi AJ + K" (fm - 60) + (B[ I] t A[J] + K); 

Figure 7 (Continued) 
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oriented ISP with 45 bit mantissa single precision general registers. This structure assumes that a Pro- 

floating point (also double precision floating point gram consists of several read accesses to a large arrayb), 

operations is provided). The PC state has three sets of a large number of operations on these accessed ele- 

' 5 B i  B j  + K" ( fm  = 61) + ( B [ i l  (-- B [ j l  + K); 

"sBi X j  + K" ( fm  = 62) + ( N i l  * - X [ j ] < l 7 : ( b  + K) ;  

**SBi X j  + Bk" ( fm - 63) -r ( B [ i ]  t X[j]<)7:(b + B[k]);  

"SBi A j  + Bk" ( fm - 64) + (B[ 11 t- A [ j ]  + BCk]); 

@ISBi A j  - Ek" (fm = 65) + (B[ 11 + A [  j l  - B [ k l ) ;  

IosBi  e j  + Bk" ( fm = 66) -t (BC11 + BCJI + BCkl); 

"SBi B j  - Bk" ( fm 67) -) ( a  11 + a j l  - ~ [ k l ) ;  

Set X[ i ] /SXi  
"SXi A j  + K" (fm = 70) -t (X[ il c sign,extend(A[ j I + K ) ) :  

"SXi B j  + K" (fm 71) -, (x[ 11 + -  ~ign,extend(B[ j l  + K ) ) ;  

"SXi X j  + K" ( fm  = 72) -, (X[ i] 1- sign,extend(x[~] + K ) ) ;  

"SXi X j  + Bk" (fm - 73) -t (X[ il +- s l g n s x t e n d ( X [ j ]  + E l k ] ) ) ;  

"SXi A j  + Bk" (fm = 74) -t (X[ il + sign,extend(A[J] + B [ k ] ) ) ;  

"SXi A j  - Bk" (fm - 75) + (X[ i] + s ign>x tend(A [ j ]  - B [ k ] ) J ;  

"SXi B j  + Bk" (fm = 76) -, (X[ i] + s i g n g x t e n d ( B [ J ]  + B [ k ] ) ) ;  

"SXi B j  - Bk" (fm = 77) -, (X[ 11 + s i g n g x t e n d ( B [ J ]  - B [ k ] ) ) ;  

MisceZZaneous program control 
"PS1l (:= fm = 0) -, (Run t 0 ) ;  program s top  
'~NOOI (:= fm = 46) + ; no opemtion; pass 

Jwnp unconditiond 
"JP B i  + K" (:= fm = 02) -+ (P t B[ i] + K; p t 3);  j w n ~  

Jwnp on X [ j  ]  conditions 

"ZR X j  K" (:= fmi  = 030) + ( (XC j ]  = 0) -t (P + K; P + 3 ) ) ;  aero 

" N Z X j  K" ( : s f m i - 0 3 1 )  + ( ( ~ [ j ] + O ) + ( ~ + K ; p c 3 ) ) ;  nonaero 
"PL X j  KO1 (:I fmi = 032) + ( ( X [ j ]  2 0) + (P t K; p  4 - 3 ) ) ;  plus or ~ o s i t i o n  

"PIG X j  K" ( :=  fmi  - 033) + ( ( X [ j ]  < 0) -t (P c K; p  + 3)) ;  negative 

"IR X j  K" (:= fmi - 034) -+ ( out of mnge constant t e s t s  

, ((Y[J W 9 : 4 9 r  3777)V (XCJ 1,39:48>- 4000)) + p  +-K; P - 3 )  ; 

"OR X j  K" (:= fmi  035) -) ( 

(X [ j  lq9:48>-3777) V (X[ j  169:48>4000)+ (p +K; p +3)1; 

"OF X j  KO1 (:= fmi = 036) + ( indef ini te  form constant t e s t s  

( x [ j  l69:48>11777) V (XCj l g 9 : 4 8 h 6 0 0 0 )  + (p +K; P - 3 )  1; 
" I 0  X j  K" (:= fmi  = 037) + (  

( X [ j  189:48>11777) V (X [ j  149:48"6000) (P + K; P c 3 ) ) ;  

Jump on B [i 1, B [ j  ]  comparison 

"EQ B i  B j  K" (:= fm = 04) + ( ( B [ i  ] = B [ j ] )  + (P +K; P +3)) ;  equal 

"NE B i  B j  KO1 (:= fm - 05) -, ( ( B [ i ]  + B [ j  1) -, CP - K: p - 3 ) ) ;  not equal 

"GE B i  B j  K" (:= fm = 06) + ( ( B [ i  ] 2 B [ j ] )  + (P + K; p - 3 ) ) ;  greather than or equal 

"LT B i  B j  Ks' (:- fm = 07) -, ((BCi 1 < B[ j  1) + (P +K; P  + 3 ) ) ;  Less than 

Subroutine ca Z Z 

"RJ K" (:= fmi - 010) -1 ( return jwnp 

r ( [ ~ ] q 9 : 3 @  + 0 4 ~ r n o ~ o ( ~  + 1) ~ ) o o o o ~ ~ ;  nex t  

(P +K + 1; p - 3 ) ) ;  
Reading (RECI and writ ing (KECI  Mp with Extended Core Storage, subjected t o  bounds checks, and Ma', Mp' mapping 

"REC B j  + K" (:= fmi  = 011) + (  read extended core 
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ments, followed by 
results. 

Cc has provisions 

occasional write accesses to store of a protection and relocation address. The mapping is 
given in the ISP description for both Mp, but an 

for multiprogramming in the form Ms('Extended Core Storage/ECS) is not described. 

Mo ' [A [n ] :A [n ]  + B [ j ]  + K - i ]  < Msl[X[O]:XIO] + B [ J ]  + K - I ] ) ;  

"!AFC BJ + K" ( : =  fmi  = 012) -. ( wri te  extended core 

in teger  6wn 

in teger  d i f f erence  

count the number of  b i t s  i n  X [ k  J 

transmit 

logica Z proiluct 

logical  sum 

Zogical 11i fj'erence 

transmit  compZement 

log.!m l product and completnent 

loginul  sum u n ~ l  comp lemr?nt. 

7oglcnl l i f f e r s n c e  and compl emmil 

FZoczLing L'oint Ar i t imet ic  using li 
h 7 v  the 7enst s i p n i , f l c m t  ( 7 0 1  r n r t  c.f ar i thmet ic  is s?~lre( l  i u  i , ' ? o n ! i n ~  [,I' c ~ p w z t i o n s .  

"FXi X j  + Xk" ( :=  fm = 30) -, ( X [ i l  X l j ]  + X l k l  { s f ) ) :  f?o,rt.fxg S ~ I  

"FXi X J  - Xk" ( : -  fm = 31) -, ( X [ i ]  * X L j l  - X [ k l  { s f ) ) :  .fi'o,~l lng i:i.fference 

"DXi XJ + Xk" ( : =  fm - 3 2 )  -, fX[ i ]  . -  X[J ]  + X[k] ( l s . d f l ) ;  . f ? 0 1 ~ t i ~ l g  ;il~ strm 

"nx i  X j  - uku ( :=  fm = 3 3 )  -. (x [  i ]  *.- x [ j ]  - x [ k J  ( l s . d f ) )  ; f loa t inp  117' d i f f e r e n c e  

"RXi X j  + Xk" ( : =  fm = 34) -+ ( 

X[  i l  G- round(X[ j l )  + r o u n d ( X [ k l )  ( s f ) ) ;  

"RXi X j  - Xk" (:= fm - 35) -- ( round f'ioatiny d i f f erence  

X[ i ]  - -  r o u n d ( X [ j ] )  - round(X[k ] )  { s f ) ) ;  

"FXi XJ  $: Xk" ( : =  fm = 40) -, ( X [ i ] - , X [ j ]  x X[k]  { s f ] ) ;  f loai ing p~oilicct 

" R X i  X j  ': Xk" ( : =  fm - 41) -, ( round f loa t ing  product 

X [ i l  c X[J I  x X[k]  ( s f ] :  next  X C i I  , - round(XCi1)  [ s f ] ) ;  

"DXi X j  fi Xk" f :- fm = 42) -+ ( X [ i l  G- X [ j ]  x XCk] ( l s . d f \ )  ; f loa t ing  d p  product 

"FXi X j  / Xk" ( : -  fm = 44) - ( X [ i ]  c- X [ j ]  / X[k] ( s f ) ) ;  f loa t ing  d iv ide  

"RXi XJ / Xk" :- f m  = 45) -, (X[ i] '- round(X[J ]  / X[k])  ( s f ) )  ; round f loa t ing  d iv ide  

"NXi R j  Xk" ( :=  fm = 24) -, ( normalize 

X [ i l  +- no rma l i ze (X [k ] )  { s f ) ;  

RCJI $ -  normalize,exponent(X[k]) [ s f ) ) ;  

I'igure 7 (Continued) 
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"2x1 BJ Xk" (:- fm - 25) + 1 round and n o ~ m t i a e  

X[ i ]  t round(X[k]) ( s f ) ;  next 

X[ i ]  c normal i te(X[  i l )  ( s f ) ;  

B[J] cnormal ize,exponent(~[ i ] )  ( s f ) ) ;  

lVXi  BJ Xk' (:- fm - 26) + (B[J] t ~[k]<58:4& ( s t ) ;  unpack 

X[ i ]  t X[k]<59,47:0, i s ! ) ) ;  

llPXi BJ Xk" (:= fm = 27) + (~[k]<58:41b c B [ J l  ( s l ] ;  pack 

X[k1<59 A 7 : b  + xC11 { s t ) ) ;  

) end ~netruct ionsxemct ion 

Figure 7 (Continued) 

SUMMARY 

We have introduced two notations for two aspects of 
the upper levels of computer systems: the topmost 
information-flow level, here called the PMS level 
(there being no other common name); and the inter- 
face between the programming level and the register 
transfer level, called ISP. 

We were induced to create these notations as an 
aid in writing a book describing the architecture of 
many different computers-which served to make 
us painfully aware of the (dysfunctional) diversity 
that now exists in our way of describing systems. It 
would have been preferable to have notational systems 
cor~structed around techniques of analysis or syn- 
thesis (i.e., simulation languages). But our immediate 
need was for adequate descriptive power to present 
computer systems for a text. Considering the amount 
of effort it has taken to make these notational systems 
reasonably polished, it seems to us they should be 
presented to the computer profession, for criticism 
and reaction. 

The main sources of experience with the notation so 

descriptions for 14 systems.** The levels of details in 
all of these is as adequate as the programming manual, 
i.e., as complete as the description of the PDP-8 
example given here. In  addition a t  least one new 
machine, the DEC PDP-11 (these proceedings), has 
made use of the notation a t  the formulation and 
design stage. 
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