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Chapter 1

Introduction

This tutorial is intended for anyone who wants to learn about polyhedral com-
pilation. The main focus is on the concepts and operations involved and on Note 1.1

how to use them to accomplish basic tasks. There is some variation in the
definitions of the core polyhedral compilation concepts. The flavor used in this
tutorial is that of isl based tools such as PPCG. However, other commonly Note 1.2

used variations will also be mentioned to help the reader understand some
of the polyhedral compilation literature. These variations will be presented
as Alternatives and may be skipped by readers only interested in the isl

terminology. Although the tutorial tries to cover many topics in polyhedral
compilation, it may be somewhat biased and it does not claim to be complete.
In fact, the current preliminary version is still very incomplete.

1.1 Polyhedral Compilation

Broadly speaking, polyhedral compilation refers to a collection of program Note 1.3

analysis and compilation techniques that reason about individual “dynamic
execution instances” in a program as well as relations between pairs of such
instances. A dynamic execution instance refers to an operation or a group
of operations as it is executed at run-time, rather than as it appears in the
program text. For example, if a statement appears in a loop in the program,
then there would be as many instances as there are iterations in the loop.
Since there can be many, possibly even an infinite number, of such instances in
the program, they are typically described intensionally rather than extension-
ally, using mathematical objects such as polyhedra and Presburger formulas.
This is explained in more detail in Chapter 3 Presburger Sets and Relations.
Note that the use of polyhedra is neither required nor sufficient in polyhedral
compilation, in the sense that it is perfectly possible to perform polyhedral
compilation without polyhedra and that there are techniques outside polyhe- Note 1.4

dral compilation such as abstract interpretation and array region analysis that Note 1.5

may also use polyhedra.

The following example provides a glimpse of what is to come in this tutorial.
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4 CHAPTER 1. INTRODUCTION

{ S[i] }, { T[i] }

{ S[i]→ [i] } { T[i]→ [i] }

for (i = 0; i < 3; ++i)

S: B[i] = f(A[i]);

for (i = 0; i < 3; ++i)

T: C[i] = g(B[2 - i]);

S[], T[]

S[0],S[1],S[2] T[0],T[1],T[2]

S[0]

T[0]

B[0]

S[1]

T[1]

B[1]

S[2]

T[2]

B[2]

for (c = 0; c < 3; ++c) {

B[c] = f(A[c]);

C[2 - c] = g(B[c]);

}

S[0]T[2],S[1]T[1],S[2]T[0]

S[], T[]

{ S[i]→ [i]; T[i]→ [2− i] }

{ S[i] }, { T[i] }

input code input execution order

model

new code new execution order

Figure 1.1: A typical use case of polyhedral compilation
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It should be noted that the example only shows one particular use case of
polyhedral compilation.

Example 1.1. Consider the code fragment near the top left of Figure 1.1 on the
facing page. This is a very simple piece of code with two loops, each containing
a single statement. In this example, the “dynamic execution instances” under
consideration will be the executions of these two statements. Each statement
is executed three times, once for every iteration of the surrounding loop. Each
statement instance will be identified by the label on the statement (S or T) and
an integer. In this example, this integer is equal to the value of the loop iterator
when this instance is executed.

The tree to the right of the code expresses the execution order of the state-
ment instances. The tree comes in two forms, an intensional one on top and
an (informal) extensional one below. Let us first consider the extensional one.
The root node of this tree expresses that all instances of the S statement are
executed before all instances of the T statement. The children of this root node
then express the order of S and T statement instances respectively. In particu-
lar, S[0] is executed before S[1], which in turn is executed before S[2]. In the
end, the tree specifies that the statement instances are executed in the following
order: S[0], S[1], S[2], T[0], T[1], T[2], but it specifies this order in a more
structured way that matches the control of the input code. In particular, the
root node corresponds to the outer sequence of the two for statements, while
the leaves correspond to the for loops. The intensional tree on top provides a
more abstract representation of the same information. Instead of explicitly list-
ing the instances of the S statement in their execution order, this tree expresses
that the instances are executed according to increasing values of the identifying
integer i, which in this case corresponds to the value of the iterator of the sur-
rounding loop. The notation in this tree will be explained in Chapter 2 Sets of
Named Integer Tuples.

The graph underneath the code depicts the individual statement instances
along with the elements of the B array that are accessed by the code fragment.
An arrow is drawn between each statement instance and each array element
accessed by that statement instance. For example, the statement instance S[2]

writes to array element B[2] through the array reference B[i]. Similarly, the
statement instance T[0] reads from the same array element through the array
reference B[2 - i]. The dashed arrows are explained below.

Let us now assume that we want to change the order in which the statement
instances are executed. There are many different orders that can be chosen.
In fact, since there are 6 statement instances, there are 6! = 720 different (se-
quential) orders. If groups of statement instances are allowed to be executed
simultaneously, then there are even more possibilities. However, only some of
these orderings preserve the semantics of the original program. In particular,
an ordering that places T[0] before S[2] would not preserve the semantics of
the program because T[0] would read B[2] before it is written by S[2] and might
therefore read a value that is different from the value read in the original pro-
gram. In other words, T[0] needs to be executed after S[2]. In the figure, this
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is expressed by a dashed arrow from S[2] to T[0]. This ordering constraint is
determined by the fact that both access the same memory element and that S[2]
is executed before T[0] according to the input execution order. The computation
of such ordering constraints is the subject of Chapter 6 Dependence Analysis.

One of the possible execution orders that do preserve the semantics of the
program is shown on the bottom right. As in the case of the input execution
order, the new execution order is also expressed in an extensional (top) and
an intensional (bottom) way. In this case, the root of the tree first orders the
statement instances according to their identifying integers, where instance i of
S is grouped together with instance 2− i of T. The leaf node then orders the S

instance in the group before the T instance. In the end, this tree specifies that
the statement instances are executed in the following order: S[0], T[2], S[1],
T[1], S[2], T[0]. The code to the left of the tree corresponds to this execution
order.

1.2 Tools

This section describes the tools that will be used to demonstrate the concepts
discussed in the tutorial. The inputs to these illustrations are available as at-
tachments to the electronic version of this tutorial. They are accessible through
the file names mentioned near the illustration. The method for extracting these
attachments depends on your PDF viewer. The outputs have been generated
using barvinok-0.39.

1.2.1 pet

pet is a library for extracting (parts of) a polyhedral model (see Chap-Note 1.6

ter 5 Polyhedral Model) from C source code. By default, polyhedral mod-
els are extracted from code fragments enclosed in a #pragma scop and a
#pragma endscop. If the --autodetect option is turned on, then pet willNote 1.7

search for appropriate fragments to extract itself, but it will detect at most
one such fragment inside each function body. When pet is used as part of a
tool, e.g., iscc below, then there is usually no need to compile pet separately.

1.2.2 iscc

iscc is an interactive tool for manipulating sets of named integer tuples (see
Chapter 2 Sets of Named Integer Tuples) and related objects that is distributedNote 1.8

along with the barvinok distribution. Each command applies zero or more
operations to objects and is terminated by a semicolon. The operations are
evaluated left to right. That is, there is no operator precedence. However, the
evaluation order can be changed by placing parentheses around subexpressions.
The result of the computation may be assigned to an iscc variable through the
assignment operator, “:=”. In order to avoid potential conflicts with operator
names, it is best to only use variable names that start with a capital letter.
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The iscc variables are dynamically typed. The typeof operator can be used
to query the type of the value currently assigned to a variable.

If the result of a computation is not assigned to a variable, then it is printed.
In interactive mode, the printed result is also assigned to a numbered variable
that can be reused in later computations just like a named variable. This
assignment can be suppressed by using the print operator. The outputs shown
in this tutorial are all obtained in non-interactive mode, so they do not contain
any assignments to numbered variables. In the examples, iscc is invoked with
the input taken from a file. The commands in a file can also be executed in
interactive mode through the source operator. This operator takes a filename
(a string enclosed in double quotes) as argument and executes the commands
in the corresponding file.

Some operations return a list of values. The elements in such a list can
be extracted by postfixing the expression that returns the list with [, a zero-
based index and ]. The iscc operations will be introduced gradually in this
tutorial. On integer values, the following operators are available: + (addition),
- (subtraction) and * (multiplication). On boolean values (True and False),
the following operators are available: + (disjunction) and * (conjunction).

Example 1.2. The following transcript contains two commands. The result
of the first is assigned to a variable and therefore not printed. The result of the
second is not assigned to a variable and therefore does get printed.
iscc input ( ):

A := 2 * (1 + 3);

A * A;

iscc invocation:

iscc < assignment.iscc

iscc output:

64

The parse_file operation is only available if support for pet had been
built into iscc. This requires passing --with-pet=bundled to configure.
Note that iscc turns on the autodetect option of pet by default. Use the
--no-pet-autodetect option of iscc to turn it off again.

1.2.3 Python interface

Each of isl, pet and barvinok comes with a python interface, where the
pet version is essentially idential to the isl version and where the barvinok

version is an extended version of the pet version. In particular, the barvinok

version also contains an interface to functions defined by the barvinok library.
All three are called isl.py. They are included in the respective distributions, Note 1.9

but they can only be (re)built if configure has been explicitly told where


A := 2 * (1 + 3);
A * A;
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to find clang using the --with-clang and/or --with-clang-prefix option.
To actually build the interface, use (cd interface; make isl.py) for the
isl version and make isl.py for the pet and the barvinok versions. The
python interface is not installed automatically, so you typically need to adjust
your PYTHONPATH to point to the interface subdirectory of the build tree of
isl or to the build tree of pet or barvinok. You may also need to adjust
LD_LIBRARY_PATH to point to the directory where libisl.so, libpet.so or
libbarvinok.so is installed. Furthermore, you need to configure barvinok

with the --enable-shared-barvinok option in order for libbarvinok.so to
get built first. A simple illustration of how to use the python interface is shown
in Example 2.7 on page 13.

The names of the classes in the python interface are derived from their
isl counterparts by dropping the isl_ prefix. Since the classes are included
in an isl module, this means that in practice, the first underscore needs to
be replaced by a period. The names of the methods are derived from the
corresponding isl function names by dropping the type name prefix. Some
function names in isl have a suffix that refers to the type of the final argument.
These suffixes are also dropped from the method names.

The pet distribution also contains a Python interface called pet.py. It is
based on top of isl.py and requires the version from pet or from barvinok.
The autodetect options is not turned on by default by the python interface to
pet.
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Notes

1.1. Earlier attempts to describe the concepts and operations involved in poly-
hedral compilation (within a specific context) are available from, e.g., Clauss,
Garbervetsky, et al. (2011) and Verdoolaege (2013). Bastoul (2012, Chapter 2)
also provides an overview, but from a different, more matrix oriented, perspec-
tive.

1.2. isl was first introduced by Verdoolaege, Janssens, et al. (2009) and de-
scribed in more detail by Verdoolaege (2010). PPCG was introduced by Ver-
doolaege, Juega, et al. (2013).

1.3. The term “polyhedral compilation” appears to have originated from one
particular group, first being used by Girbal et al. (2006), Pop et al. (2006), and
Vasilache et al. (2006). It has later also been used in the tagline for the series
of IMPACT workshops: International Workshop on Polyhedral Compilation
Techniques. While the term may have originally been intended to have a more
restrictive meaning, the scope of the workshop more or less corresponds to
the meaning described in the text. Some authors even consider some forms
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of abstract interpretation and array region analysis to be part of polyhedral
compilation.
1.4. Traditionally, there have been two approaches in “polyhedral compila-
tion” research, even though this terminology was not used back then. One
approach was firmly based on polyhedra and was using tools such as PIP,
developed by Feautrier (1988b), and PolyLib, originally developed by Wilde
(1993) and further extended by Loechner and Wilde (1997), in their imple-
mentations. The other approach was based on Presburger formulas and would
use the Omega library, developed by Kelly, Maslov, et al. (1996) on top of the
Omega test of Pugh (1992) in their implementations. One crucial feature that
is shared by the two approaches is an instance-wise dataflow analysis (Feautrier
1991; Pugh and Wonnacott 1992).
1.5. The use of polyhedra as an abstract domain in abstract interpretation
was introduced by Cousot and Halbwachs (1978). Array region analysis (using
polyhedra) was introduced by Triolet et al. (1986) and further extended by
Creusillet and Irigoin (1996).
1.6. The pet library was introduced by Verdoolaege and Grosser (2012).
1.7. These pragmas are inherited from clan, developed by Bastoul (2008).
1.8. The iscc tool was introduced by Verdoolaege (2011).
1.9. The isl.py interface should not be confused with the islpy library,
which was introduced by Klöckner (2014) and is available from http://documen.

tician.de/islpy/. Although both are wrappers around the isl library, the
naming conventions and the set of exposed functionality are slightly different.

http://documen.tician.de/islpy/
http://documen.tician.de/islpy/




Chapter 2

Sets of Named Integer Tuples

This chapter describes the abstract elements that are used to represent various
entities later on in the tutorial, sets and binary relations of such elements and
operations on these sets and relations. In order to make this chapter accessible
to readers who are not interested in polyhedral compilation, these concepts
are treated purely abstractly. Furthermore, all sets in this chapter will be
described extensionally. Intensional descriptions form the subject of Chapter 3
Presburger Sets and Relations.

2.1 Named Integer Tuples

The objects considered in this tutorial are each represented by a named integer
tuple, consisting of an identifier (name) and a sequence of integer values. The
identifier may be omitted and the sequence of integers may have a zero length.
Two such named integer tuples are considered to be the same if they have the
same identifier and the same sequence of integer values. Note 2.1

Notation 2.1 (Named Integer Tuple). The notation for a named integer tuple
is formed by the identifier followed by a comma delimited list of the integer
values enclosed in square brackets.

Note 2.2

For example, the “named” integer tuple without identifier and with a zero-
length sequence of integers is written “[]”. The named integer tuple with identi-
fier A and sequence of integers 2, 8 and 1 is written “A[2, 8, 1]”. Named integer
tuples will be extended to structured named integer tuples in Definition 2.66
on page 28.

Alternative 2.2 (Unnamed Integer Tuples). Some frameworks only deal
with sequences of integers, without support for an explicit identifier. In
cases where there are different types of such sequences at a conceptual
level, the different types are usually encoded by means of an additional
integer value that is added at the beginning or the end of the sequence.

11
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For example, if A is assigned the value 0, then the above named tuple
could be represented as [0, 2, 8, 1].

2.2 Sets

A set of named integer tuples contains zero or more named integer tuples as
elements.

Notation 2.3 (Set). The notation for a set is formed by a semicolon delimited
list of elements enclosed in braces.

No order is defined on the elements in a set. This means in particular, that
the elements in a set may be printed in a different order than the one in which
it was defined. Elements in a set do not carry any multiplicity. That is, an
element either belongs to a set or it does not belong to a set, but it cannot
belong to the set multiple times. For example, the set

{ []; A[2, 8, 1] } (2.1)

is equal to the set
{A[2, 8, 1]; []; [] }. (2.2)

In isl, such sets are represented by an isl_union_set. The empty set isNote 2.3

written { } or ∅ in the text and { } in iscc. In isl, an empty set can be
created using isl_union_set_empty.

Alternative 2.4 (Fixed-dimensional Sets). Some frameworks do not al-
low integer tuples of different sizes to be combined into the same set. The
tuples of smaller sizes are then typically padded with arbitrary integer
values (say, zero). For example, if A[2, 8, 1] is encoded as [0, 2, 8, 1] as
in Alternative 2.2 Unnamed Integer Tuples and if this element needs to
be combined with B[5] in the same set, then the latter can be encoded as
[1, 5, 0, 0], assuming that B is represented by the value 1.

2.2.1 Basic Operations

The most basic operations are the intersection, the union and the set difference.

Operation 2.5 (Intersection of Sets). The intersection A ∩ B of two sets A
and B contains the elements that are contained in both A and B.

In isl, this operation is called isl_union_set_intersect. In iscc, this
operation is written *.

Example 2.6. iscc input ( ):

{ B[0]; A[2,8,1] } * { A[2,8,1]; C[5] };

iscc invocation:


{ B[0]; A[2,8,1] } * { A[2,8,1]; C[5] };
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iscc < intersection.iscc

iscc output:

{ A[2, 8, 1] }

Example 2.7. The same result as in Example 2.6 can be obtained using the
python interface as follows.
python input ( ):

import isl

s1 = isl.union_set("{ B[0]; A[2,8,1] }")

s2 = isl.union_set("{ A[2,8,1]; C[5] }")

print s1.intersect(s2)

python invocation:

python < intersection.py

python output:

{ A[2, 8, 1] }

Operation 2.8 (Union of Sets). The union A∪B of two sets A and B contains
the elements that are contained in either A or B.

In isl, this operation is called isl_union_set_union. In iscc, this oper-
ation is written +.

Example 2.9. iscc input ( ):

{ B[0]; A[2,8,1] } + { A[2,8,1]; C[5] };

iscc invocation:

iscc < union.iscc

iscc output:

{ C[5]; B[0]; A[2, 8, 1] }

Note that since no order is defined on the elements in a set, the elements in
this union may be printed in a different order on your screen.

Operation 2.10 (Set Difference). The difference A \ B of two sets A and B
contains the elements that are contained in A but not in B.

In isl, this operation is called isl_union_set_subtract. In iscc, this
operation is written -.

Example 2.11. iscc input ( ):


import isl

s1 = isl.union_set("{ B[0]; A[2,8,1] }")
s2 = isl.union_set("{ A[2,8,1]; C[5] }")
print s1.intersect(s2)



{ B[0]; A[2,8,1] } + { A[2,8,1]; C[5] };



{ B[0]; A[2,8,1] } - { A[2,8,1]; C[5] };
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{ B[0]; A[2,8,1] } - { A[2,8,1]; C[5] };

iscc invocation:

iscc < difference.iscc

iscc output:

{ B[0] }

2.2.2 Comparisons

The most basic comparison operation on sets is the equality operation.

Operation 2.12 (Equality of Sets). Two sets A and B are equal (A = B) if
they contain the same elements.

In isl, this operation is called isl_union_set_is_equal. In iscc, this
operation is written =. See also Operation 3.26 on page 48.

Example 2.13. The following transcript confirms that the set in (2.1) is equal
to the set in (2.2).
iscc input ( ):

{ []; A[2,8,1] } = { A[2,8,1]; []; [] };

iscc invocation:

iscc < set_equal.iscc

iscc output:

True

Example 2.14. The same result as in Example 2.13 can be obtained using the
python interface as follows.
python input ( ):

import isl

s1 = isl.union_set("{ []; A[2,8,1] }")

s2 = isl.union_set("{ A[2,8,1]; []; [] }")

print s1.is_equal(s2)

python invocation:

python < set_equal.py

python output:

True


{ []; A[2,8,1] } = { A[2,8,1]; []; [] };



import isl

s1 = isl.union_set("{ []; A[2,8,1] }")
s2 = isl.union_set("{ A[2,8,1]; []; [] }")
print s1.is_equal(s2)
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A special case of the equality operation is the test whether a set is empty.

Operation 2.15 (Emptiness of a Set). A set is empty if it does not contain
any element, i.e., if it is equal to the empty set.

In isl, this operation is called isl_union_set_is_empty. In iscc, this
operation can be performed by comparing with the empty set. See also Oper-
ation 3.31 on page 49.

Example 2.16. iscc input ( ):

{ []; A[2,8,1] } = { };

iscc invocation:

iscc < set_empty.iscc

iscc output:

False

Other comparisons are the (strict) subset test and the (strict) superset test.

Operation 2.17 (Subset). The set A is a subset of the set B, A ⊆ B, if all
elements of A are contained in B, i.e., if A \B = ∅.

In isl, this operation is called isl_union_set_is_subset. In iscc, this
operation is written <=. See also Operation 3.34 on page 49.

Example 2.18. iscc input ( ):

{ []; A[2,8,1] } <= { A[2,8,1]; []; [] };

iscc invocation:

iscc < set_subset.iscc

iscc output:

True

Operation 2.19 (Strict Subset). The set A is a strict (or proper) subset of
the set B, A ( B, if all elements of A are contained in B and B contains
elements not in A, i.e., if A \B = ∅ and A 6= B.

In isl, this operation is called isl_union_set_is_strict_subset. In
iscc, this operation is written <. See also Operation 3.37 on page 50.

Example 2.20. iscc input ( ):

{ []; A[2,8,1] } < { A[2,8,1]; []; [] };

iscc invocation:


{ []; A[2,8,1] } = { };



{ []; A[2,8,1] } <= { A[2,8,1]; []; [] };



{ []; A[2,8,1] } < { A[2,8,1]; []; [] };
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A[2,8,1]

B[5]

B[6]

Figure 2.1: A graph representation of the binary relation in (2.3)

iscc < set_subset.iscc

iscc output:

False

Operation 2.21 (Superset). The set A is a superset of the set B, A ⊇ B, if
all elements of B are contained in A, i.e., if B ⊆ A.

In isl, there is no specific function for this operation, but the function
isl_union_set_is_subset can be called with the arguments reversed. In
iscc, this operation is written >=. See also Operation 3.40 on page 50.

Operation 2.22 (Strict Superset). The set A is a strict (or proper) superset
of the set B, A ) B, if all elements of B are contained in A and A contains
elements not in B, i.e., if B ( A.

In isl, there is no specific function for this operation, but the function
isl_union_set_is_strict_subset can be called with the arguments reversed.
In iscc, this operation is written >. See also Operation 3.42 on page 50.

2.3 Binary Relations

A binary relation is a set that contains pairs of named integer tuples.

Notation 2.23 (Pair of Elements). In isl, the two named integer tuples in
each pair in a binary relation are separated by a ->.Note 2.4

Note that this notation does not imply that there would be a functional
dependence from the first tuple to the second. That is, a given first tuple may
appear in multiple pairs with different values for the second tuple. In fact, a
binary relation can be considered as representing the edges of a graph. This
graph may have loops, but no parallel edges.

Example 2.24. Figure 2.1 shows a graph representation of the following
binary relation:

{A[2, 8, 1]→ B[5]; A[2, 8, 1]→ B[6]; B[5]→ B[5] }. (2.3)
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In isl, such binary relations are represented by an isl_union_map. The
empty binary relation is written { } or ∅ in the text and { } in iscc. In isl,
an empty binary relation can be created using isl_union_map_empty. Note
that even though a binary relation is essentially just a set of pairs of tuples,
there is a strict separation in isl between sets and binary relations. That is,
a set can only contain tuples (and no pairs of tuples) and a relation can only
contain pairs of tuples (and no tuples themselves).

Alternative 2.25 (Encoding Binary Relations). Some frameworks do
not have special support for binary relations. Binary relations then need
to be encoded in sets of a dimension that is double the dimension of the
base sets. For example, using the same encodings of A and B as in
Alternative 2.4 Fixed-dimensional Sets, the binary relation in (2.3) can
be encoded as

{ [0, 2, 8, 1, 1, 5, 0, 0]; [0, 2, 8, 1, 1, 6, 0, 0]; [1, 5, 0, 0, 1, 5, 0, 0] }. (2.4)

2.3.1 Basic Operations

Since a binary relation is essentially a set of pairs of tuples, the operations
that apply to sets also apply to binary relations. Binary relations additionally
admit an inverse and a composition operation.

Operation 2.26 (Intersection of Binary Relations). The intersection A∩B of
two binary relations A and B contains the pairs of elements that are contained
in both A and B.

In isl, this operation is called isl_union_map_intersect. In iscc, this
operation is written *.

Example 2.27. iscc input ( ):

{ A[2,8,1] -> B[5]; B[5] -> B[5] } *

{ A[2,8,1] -> B[6]; B[5] -> B[5] };

iscc invocation:

iscc < map_intersection.iscc

iscc output:

{ B[5] -> B[5] }

Operation 2.28 (Union of Binary Relations). The union A∪B of two binary
relations A and B contains the pairs of elements that are contained in either
A or B.

In isl, this operation is called isl_union_map_union. In iscc, this oper-
ation is written +.


{ A[2,8,1] -> B[5]; B[5] -> B[5] } *
    { A[2,8,1] -> B[6]; B[5] -> B[5] };
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Operation 2.29 (Binary Relation Difference). The difference A \ B of two
binary relations A and B contains the pairs of elements that are contained in
A but not in B.

In isl, this operation is called isl_union_map_subtract. In iscc, this
operation is written -.

Operation 2.30 (Inverse of a Binary Relation). The inverse R−1 of a binary
relation R contains the same pairs of elements as R, but with the order of the
elements in the pair interchanged. That is,

R−1 = { j → i : i→ j ∈ R }. (2.5)

In isl, this operation is called isl_union_map_reverse. In iscc, this
operation is written ^-1.

Example 2.31. iscc input ( ):

{ A[2,8,1] -> B[5]; A[2,8,1] -> B[6]; B[5] -> B[5] }^-1;

iscc invocation:

iscc < inverse.iscc

iscc output:

{ B[6] -> A[2, 8, 1]; B[5] -> A[2, 8, 1]; B[5] -> B[5] }

Operation 2.32 (Composition of Binary Relations). The composition B ◦ A
of two binary relations A and B contains those pairs of elements such that the
first element appears as a first element in A, the second element appears as a
second element in B and such that the other element in those pairs (i.e., the
second element in A and the first element in B) is the same. That is,

B ◦A = { i→ j : ∃k : i→ k ∈ A ∧ k→ j ∈ B }. (2.6)

In isl, this operation is called isl_union_map_apply_range, with argu-
ments A and B. In iscc, this operation is written before or “.” with argu-
ments A and B; or, with the arguments reversed, after or (), in particular
B(A).

Example 2.33. Consider the relations

A = {B[6]→ A[2, 8, 1]; B[6]→ B[5] } (2.7)

and
B = {A[2, 8, 1]→ B[5]; A[2, 8, 1]→ B[6]; B[5]→ B[5] }. (2.8)

Their composition is

B ◦A = {B[6]→ B[6]; B[6]→ B[5] }. (2.9)


{ A[2,8,1] -> B[5]; A[2,8,1] -> B[6]; B[5] -> B[5] }^-1;
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A[2,8,1]

B[5]

B[6]

Figure 2.2: A graph representation of the binary relations in (2.7) (dashed lines)
and (2.8) (dotted lines) along with their composition in (2.9) (solid lines)

Note that the composition of B and A (in the opposite order) is different:

A ◦B = {A[2, 8, 1]→ B[5]; A[2, 8, 1]→ A[2, 8, 1] }. (2.10)

iscc input ( ):

A := { B[6] -> A[2,8,1]; B[6] -> B[5] };

B := { A[2,8,1] -> B[5]; A[2,8,1] -> B[6]; B[5] -> B[5] };

B after A;

A after B;

iscc invocation:

iscc < composition.iscc

iscc output:

{ B[6] -> B[6]; B[6] -> B[5] }

{ A[2, 8, 1] -> B[5]; A[2, 8, 1] -> A[2, 8, 1] }

The composition R(R) of a binary relation R with itself can also be written
R2. Similarly, R−2 is the composition of the inverse of R with itself. More
generally, the fixed power of a binary relation is defined as follows.

Operation 2.34 (Fixed Power of a Binary Relation). The fixed power Rn of
a binary relation R with n a non-zero integer is equal to the composition of Note 2.5

n copies of R if n is positive or the composition of −n copies of R−1 if n is
negative. In other words,

Rn =


R if n = 1

Rn−1(R) if n > 1

R−1 if n = −1

Rn+1(R−1) if n < −1.

(2.11)


A := { B[6] -> A[2,8,1]; B[6] -> B[5] };
B := { A[2,8,1] -> B[5]; A[2,8,1] -> B[6]; B[5] -> B[5] };
B after A;
A after B;
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In isl, this operation is called isl_union_map_fixed_power_val. In iscc,
this operation is written ^.

Example 2.35. iscc input ( ):

R := { A[2,8,1] -> B[5]; A[2,8,1] -> B[6]; B[5] -> B[5] };

R;

R^2;

R^3;

R^-1;

R^ -2;

iscc invocation:

iscc < fixed_power.iscc

iscc output:

{ A[2, 8, 1] -> B[6]; A[2, 8, 1] -> B[5]; B[5] -> B[5] }

{ A[2, 8, 1] -> B[5]; B[5] -> B[5] }

{ A[2, 8, 1] -> B[5]; B[5] -> B[5] }

{ B[6] -> A[2, 8, 1]; B[5] -> A[2, 8, 1]; B[5] -> B[5] }

{ B[5] -> A[2, 8, 1]; B[5] -> B[5] }

Example 2.36. The same result as in Example 2.35 can be obtained using the
python interface as follows.

python input ( ):

import isl

r = isl.union_map(

"{ A[2,8,1] -> B[5]; A[2,8,1] -> B[6]; B[5] -> B[5] }")

print r;

print r.fixed_power(isl.val (2))

print r.fixed_power(isl.val (3))

print r.fixed_power(isl.val(-1))

print r.fixed_power(isl.val(-2))

python invocation:

python < fixed_power.py

python output:

{ A[2, 8, 1] -> B[6]; A[2, 8, 1] -> B[5]; B[5] -> B[5] }

{ A[2, 8, 1] -> B[5]; B[5] -> B[5] }

{ A[2, 8, 1] -> B[5]; B[5] -> B[5] }

{ B[6] -> A[2, 8, 1]; B[5] -> A[2, 8, 1]; B[5] -> B[5] }

{ B[5] -> A[2, 8, 1]; B[5] -> B[5] }


R := { A[2,8,1] -> B[5]; A[2,8,1] -> B[6]; B[5] -> B[5] };
R;
R^2;
R^3;
R^-1;
R^-2;



import isl

r = isl.union_map(
    "{ A[2,8,1] -> B[5]; A[2,8,1] -> B[6]; B[5] -> B[5] }")
print r;
print r.fixed_power(isl.val(2))
print r.fixed_power(isl.val(3))
print r.fixed_power(isl.val(-1))
print r.fixed_power(isl.val(-2))
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2.3.2 Comparisons

The same comparison operators that can be applied to sets can also be applied
to binary relations.

Operation 2.37 (Equality of Binary Relations). Two binary relations A and
B are equal (A = B) if they contain the same pairs of elements.

In isl, this operation is called isl_union_map_is_equal. In iscc, this
operation is written =. See also Operation 3.30 on page 49.

Operation 2.38 (Emptiness of a Binary Relation). A binary relation is empty
if it does not contain any pair of elements, i.e., if it is equal to the empty binary
relation.

In isl, this operation is called isl_union_map_is_empty. In iscc, this
operation can be performed by comparing with the empty binary relation. See
also Operation 3.33 on page 49.

Operation 2.39 (Subrelation). The binary relation A is a subset of the binary
relation B, A ⊆ B, if all pairs of elements in A are contained in B, i.e., if
A \B = ∅.

In isl, this operation is called isl_union_map_is_subset. In iscc, this
operation is written <=. See also Operation 3.36 on page 50.

Operation 2.40 (Strict Subrelation). The binary relation A is a strict (or
proper) subset of the binary relation B, A ( B, if all pairs of elements of A
are contained in B and B contains pairs of elements not in A, i.e., if A\B = ∅
and A 6= B.

In isl, this operation is called isl_union_map_is_strict_subset. In
iscc, this operation is written <. See also Operation 3.39 on page 50.

Operation 2.41 (Superrelation). The binary relation A is a superset of the
binary relation B, A ⊇ B, if all pairs of elements in B are contained in A,
i.e., if B ⊆ A.

In isl, there is no specific function for this operation, but the function
isl_union_map_is_subset can be called with the arguments reversed. In
iscc, this operation is written >=. See also Operation 3.41 on page 50.

Operation 2.42 (Strict Superrelation). The binary relation A is a strict (or
proper) superset of the binary relation B, A ) B, if all pairs of elements in B
are contained in A and A contains pairs of elements not in B, i.e., if B ( A.

In isl, there is no specific function for this operation, but the function
isl_union_map_is_strict_subset can be called with the arguments reversed.
In iscc, this operation is written >. See also Operation 3.43 on page 50.
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2.3.3 Conversions

This section describes operations that create binary relations from sets or the
other way around.

Operation 2.43 (Domain of a Binary Relation). The domain domR of a
binary relation R consists of the elements that appear as first element in the
pairs of elements of R. That is,

domR = { i : ∃j : i→ j ∈ R }. (2.12)

In isl, this operation is called isl_union_map_domain. In iscc, this op-
eration is written dom or domain.

Example 2.44. Consider the binary relation from Example 2.24 on page 16,
shown in Figure 2.1 on page 16. The domain of this relation is

{A[2, 8, 1]; B[5] }. (2.13)

iscc input ( ):

dom { A[2,8,1] -> B[5]; A[2,8,1] -> B[6]; B[5] -> B[5] };

iscc invocation:

iscc < domain.iscc

iscc output:

{ B[5]; A[2, 8, 1] }

Operation 2.45 (Range of a Binary Relation). The range ranR of a binary
relation R consists of the elements that appear as second element in the pairs
of elements of R. That is,

ranR = { j : ∃i : i→ j ∈ R }. (2.14)

In isl, this operation is called isl_union_map_range. In iscc, this oper-
ation is written ran or range.

Example 2.46. Consider once more the binary relation from Example 2.24
on page 16, shown in Figure 2.1 on page 16. The range of this relation is

{B[5]; B[6] }. (2.15)

iscc input ( ):

ran { A[2,8,1] -> B[5]; A[2,8,1] -> B[6]; B[5] -> B[5] };

iscc invocation:

iscc < range.iscc


dom { A[2,8,1] -> B[5]; A[2,8,1] -> B[6]; B[5] -> B[5] };



ran { A[2,8,1] -> B[5]; A[2,8,1] -> B[6]; B[5] -> B[5] };
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A[2,8,1]

B[5]

B[6]

S

T

Figure 2.3: The two sets in (2.17) and their universal relation

iscc output:

{ B[6]; B[5] }

Operation 2.47 (Universal Binary Relation between Sets). The universal
relation A→ B between two sets A and B is the binary relation that contains
the pairs of elements obtained by taking the first element from A and the second
element from B. That is,

A→ B = { i→ j : i ∈ A ∧ j ∈ B }. (2.16)

In isl, this operation is called isl_union_map_from_domain_and_range.
In iscc, this operation is written ->.

Example 2.48. The two sets

S = {A[2, 8, 1]; B[5] } and T = {A[2, 8, 1]; B[6] } (2.17)

along with the universal relation constructed from the two sets are shown in Fig-
ure 2.3.
iscc input ( ):

S := { A[2,8,1]; B[5] };

T := { A[2,8,1]; B[6] };

S -> T;

iscc invocation:

iscc < universal.iscc

iscc output:

{ B[5] -> A[2, 8, 1]; A[2, 8, 1] -> B[6]; A[2, 8, 1] -> A[2,

↪→ 8, 1]; B[5] -> B[6] }


S := { A[2,8,1]; B[5] };
T := { A[2,8,1]; B[6] };
S -> T;
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Operation 2.49 (Identity Relation on a Set). The identity relation 1S on a
set S is the binary relation that contains a pair of elements for each element
of S consisting of two copies of that element. That is,

1S = { i→ i : i ∈ S }. (2.18)

In isl, this operation is called isl_union_set_identity.

Example 2.50. python input ( ):

import isl

s = isl.union_set("{ B[6]; A[2,8,1]; B[5] }")

print s.identity ()

python invocation:

python < identity.py

python output:

{ A[2, 8, 1] -> A[2, 8, 1]; B[6] -> B[6]; B[5] -> B[5] }

2.3.4 Mixed Operations

This section describes some operations that combine a binary relation and a
set.

Operation 2.51 (Domain Restriction). The domain restriction R ∩dom S of
a binary relation R with respect to a set S contains those pairs of elements of
R of which the first in the pair belongs to S. In other words,

R ∩dom S = R ∩ (S → (ranR)) (2.19)

In isl, this operation is called isl_union_map_intersect_domain. In
iscc, this operation is written *.

Example 2.52. iscc input ( ):

R := { A[2,8,1] -> B[5]; A[2,8,1] -> B[6]; B[5] -> B[5] };

S := { A[2,8,1]; C[5] };

R * S;

iscc invocation:

iscc < intersect_domain.iscc

iscc output:

{ A[2, 8, 1] -> B[6]; A[2, 8, 1] -> B[5] }


import isl

s = isl.union_set("{ B[6]; A[2,8,1]; B[5] }")
print s.identity()



R := { A[2,8,1] -> B[5]; A[2,8,1] -> B[6]; B[5] -> B[5] };
S := { A[2,8,1]; C[5] };
R * S;
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Operation 2.53 (Range Restriction). The range restriction R ∩ran S of a
binary relation R with respect to a set S contains those pairs of elements of R
of which the second in the pair belongs to S. In other words,

R ∩ran S = R ∩ ((domR)→ S) (2.20)

In isl, this operation is called isl_union_map_intersect_range. In iscc,
this operation is written ->*.

Example 2.54. iscc input ( ):

R := { A[2,8,1] -> B[5]; A[2,8,1] -> B[6]; B[5] -> B[5] };

S := { A[2,8,1]; B[5] };

R ->* S;

iscc invocation:

iscc < intersect_range.iscc

iscc output:

{ A[2, 8, 1] -> B[5]; B[5] -> B[5] }

Operation 2.55 (Domain Subtraction). The domain subtraction R \dom S of
a binary relation R with respect to a set S contains those pairs of elements of
R of which the first in the pair does not belong to S. In other words,

R \dom S = R \ (S → (ranR)) (2.21)

In isl, this operation is called isl_union_map_subtract_domain. In iscc,
this operation is written -.

Example 2.56. iscc input ( ):

R := { A[2,8,1] -> B[5]; A[2,8,1] -> B[6]; B[5] -> B[5] };

S := { A[2,8,1]; C[5] };

R - S;

iscc invocation:

iscc < subtract_domain.iscc

iscc output:

{ B[5] -> B[5] }

Operation 2.57 (Range Subtraction). The range subtraction R \ran S of a
binary relation R with respect to a set S contains those pairs of elements of R
of which the second in the pair does not belong to S. In other words,

R \ran S = R \ ((domR)→ S) (2.22)


R := { A[2,8,1] -> B[5]; A[2,8,1] -> B[6]; B[5] -> B[5] };
S := { A[2,8,1]; B[5] };
R ->* S;



R := { A[2,8,1] -> B[5]; A[2,8,1] -> B[6]; B[5] -> B[5] };
S := { A[2,8,1]; C[5] };
R - S;
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In isl, this operation is called isl_union_map_subtract_range. In iscc,
this operation is written ->-.

Example 2.58. iscc input ( ):

R := { A[2,8,1] -> B[5]; A[2,8,1] -> B[6]; B[5] -> B[5] };

S := { A[2,8,1]; B[5] };

R ->- S;

iscc invocation:

iscc < subtract_range.iscc

iscc output:

{ A[2, 8, 1] -> B[6] }

Operation 2.59 (Application). The application R(S) of a binary relation R
to a set S is the set containing those elements that appear as the second element
in a pair of elements in R while the corresponding first element is an element
of S. In other words,

R(S) = ran(R ∩dom S)

= { j : ∃i ∈ S : i→ j ∈ R }.
(2.23)

In isl, this operation is called isl_union_set_apply with arguments S
and R. In iscc, this operation is written (), in particular R(S).

Example 2.60. iscc input ( ):

R := { A[2,8,1] -> B[5]; A[2,8,1] -> B[6]; B[5] -> B[5] };

S := { A[2,8,1]; B[5] };

R(S);

iscc invocation:

iscc < application.iscc

iscc output:

{ B[6]; B[5] }

2.3.5 Properties

While a binary relation does not necessarily represent a (single-valued) func-
tion, some binary relations may very well be single-valued. The following op-
eration can be used to check for this property.

Operation 2.61 (Single-valued). A binary relation R is single-valued, i.e.,
a function, if every element that appears as the second element in a pair of
elements in R only appears as the second element in one such pair.


R := { A[2,8,1] -> B[5]; A[2,8,1] -> B[6]; B[5] -> B[5] };
S := { A[2,8,1]; B[5] };
R ->- S;



R := { A[2,8,1] -> B[5]; A[2,8,1] -> B[6]; B[5] -> B[5] };
S := { A[2,8,1]; B[5] };
R(S);
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In isl, this operation is called isl_union_map_is_single_valued. The
property can be evaluated by composing the inverse of R with R and checking
whether the result is a subset of the identity relation on the range of R, i.e.

R ◦R−1 ⊆ 1ranR. (2.24)

See also Operation 3.44 on page 51.

Example 2.62. The relation

{B[6]→ A[2, 8, 1]; B[6]→ B[5] } (2.25)

is not single-valued, but the relation

{A[2, 8, 1]→ B[5]; B[5]→ B[5] } (2.26)

is single-valued.
python input ( ):

import isl

r1 = isl.union_map("{ B[6] -> A[2,8,1]; B[6] -> B[5] }")

r2 = isl.union_map("{ A[2,8,1] -> B[5]; B[5] -> B[5] }")

print r1.is_single_valued ()

print r2.is_single_valued ()

python invocation:

python < singlevalued.py

python output:

False

True

Similarly, a relation can be checked for being injective or bijective.

Operation 2.63 (Injective). A binary relation R is injective if every element
that appears as the first element in a pair of elements in R only appears as the
first element in one such pair, i.e., if its inverse is single-valued.

In isl, this operation is called isl_union_map_is_injective. The prop-
erty can be evaluated by composing R with its inverse and checking whether
the result is a subset of the identity relation on the domain of R, i.e.

R−1 ◦R ⊆ 1domR. (2.27)

See also Operation 3.45 on page 51.

Example 2.64. python input ( ):


import isl

r1 = isl.union_map("{ B[6] -> A[2,8,1]; B[6] -> B[5] }")
r2 = isl.union_map("{ A[2,8,1] -> B[5]; B[5] -> B[5] }")
print r1.is_single_valued()
print r2.is_single_valued()



import isl

r1 = isl.union_map("{ B[6] -> A[2,8,1]; B[6] -> B[5] }")
r2 = isl.union_map("{ A[2,8,1] -> B[5]; B[5] -> B[5] }")
print r1.is_injective()
print r2.is_injective()
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import isl

r1 = isl.union_map("{ B[6] -> A[2,8,1]; B[6] -> B[5] }")

r2 = isl.union_map("{ A[2,8,1] -> B[5]; B[5] -> B[5] }")

print r1.is_injective ()

print r2.is_injective ()

python invocation:

python < injective.py

python output:

True

False

Operation 2.65 (Bijective). A binary relation R is bijective if it is both single-
valued and injective.

2.4 Wrapped Relations

While sets keep track of named integer tuples and binary relations keep track
of pairs of such tuples, it can sometimes be convenient to keep track of relations
between more than two such tuples. isl currently does not support ternary or
general n-ary relations. However, it does allow a pair of tuples to be combined
into a single tuple, which can then again appear as the first or second tuple in
a pair of tuples. This process is called “wrapping”. The result of wrapping a
pair of named integer tuples is called a structured named integer tuple.

2.4.1 Structured Named Integer Tuples

Definition 2.66 (Structured Named Integer Tuple). A structured named in-
teger tuple is either

• a named integer tuple, i.e., an identifier n along with d ≥ 0 integers ij
for 0 ≤ j < d, written n[i0, i1, . . . , id−1], or,

• a named pair of structured named integer tuples, i.e., an identifier n along
with two structured named integer tuples i and j written n[i→ j].

Example 2.67. The following is a set of structured named integer tuples:

{B[5]; S[B[6]→ A[2, 8, 1]]; Q[B[5]→ S[B[6]→ A[2, 8, 1]]] }. (2.28)

The following is a binary relation of structured named integer tuples:

{B[5]→ A[2, 8, 1]; S[B[6]→ A[2, 8, 1]]→ B[5] }. (2.29)
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From this point on, sets will be considered to contain structured named
integer tuples rather than just named integer tuples and binary relations will
be considered to contain pairs of structured named integer tuples. In fact,
the concept of named integer tuple itself will be considered to also include
structured named integer tuples. However, as before, a set cannot contain a
pair of tuples and a binary relation cannot contain a single tuple.

It will be convenient to consider groups of elements that share the same
structure and/or identifiers together. To this end, the following concept is
defined.

Definition 2.68 (Space). The space Si of a structured named integer tuple i
is

• n/d, if i is of the form n[i0, i1, . . . , id−1], with n an identifier and d a
non-negative integer, or,

• (n,S(j),S(k)), if i is of the form n[j → k], with n an identifier and j
and k structured named integer tuples.

The space of a pair of structured named integer tuples i→ j is (S(i),S(j)).

Example 2.69. The space of the tuple Q[B[5] → S[B[6] → A[2, 8, 1]]] is
(Q,B/1, (S,B/1,A/3)).

Similarly, the values of the integers can be extracted from a structured
named integer tuple.

Definition 2.70 (Value Vector). The value vector Vi of a structured named
integer tuple i is the vector

• (i0, i1, . . . , id−1), if i is of the form n[i0, i1, . . . , id−1], with n an identifier
and d a non-negative integer, or,

• V(j)‖V(k), with ‖ the concatenation of two vectors, if i is of the form
n[j → k], with n an identifier and j and k structured named integer
tuples.

The value vector of a pair of structured named integer tuples i → j is
V(i)‖V(j).

Example 2.71. The value vector of the tuple Q[B[5]→ S[B[6]→ A[2, 8, 1]]] is
(5, 6, 2, 8, 1).

2.4.2 Wrapping and Unwrapping

Operation 2.72 (Wrap). The wrap WR of a binary relation R is a set that
contains an anonymous wrapped copy of each pair of elements in R. That is,

WR = { [i→ j] : i→ j ∈ R }. (2.30)
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In isl, this operation is called isl_union_map_wrap. In iscc, this opera-
tion is written wrap.

Example 2.73. iscc input ( ):

wrap { A[2,8,1] -> B[5]; A[2,8,1] -> B[6]; B[5] -> B[5] };

iscc invocation:

iscc < wrap.iscc

iscc output:

{ [A[2, 8, 1] -> B[6]]; [A[2, 8, 1] -> B[5]]; [B[5] -> B[5]]

↪→ }

Operation 2.74 (Unwrap). The unwrap W−1S of a set S is a binary relation
that contains the pairs of elements of which S contains a wrapped copy. That
is,

W−1S = { i→ j : ∃n : n[i→ j] ∈ S }. (2.31)

In isl, this operation is called isl_union_set_unwrap. In iscc, this op-
eration is written unwrap.

Example 2.75. iscc input ( ):

S := { B[5]; S[B[6] -> A[2, 8, 1]];

Q[B[5] -> S[B[6] -> A[2, 8, 1]]] };

unwrap S;

iscc invocation:

iscc < unwrap.iscc

iscc output:

{ B[6] -> A[2, 8, 1]; B[5] -> S[B[6] -> A[2, 8, 1]] }

Note that while W−1WR, with R a binary relation, is always equal to R,
WW−1S, with S a set, may not be equal to S. In particular, S may contain
elements that are not wrapped pairs and those will be removed. Moreover, if
any wrapped pair has an identifier, then that identifier will be removed from
the wrapped pair as well.

Example 2.76. iscc input ( ):

S := { B[5]; S[B[6] -> A[2, 8, 1]];

Q[B[5] -> S[B[6] -> A[2, 8, 1]]] };

wrap (unwrap S);

iscc invocation:

iscc < wrap_unwrap.iscc


wrap { A[2,8,1] -> B[5]; A[2,8,1] -> B[6]; B[5] -> B[5] };



S := { B[5]; S[B[6] -> A[2, 8, 1]];
       Q[B[5] -> S[B[6] -> A[2, 8, 1]]] };
unwrap S;



S := { B[5]; S[B[6] -> A[2, 8, 1]];
       Q[B[5] -> S[B[6] -> A[2, 8, 1]]] };
wrap (unwrap S);
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iscc output:

{ [B[6] -> A[2, 8, 1]]; [B[5] -> S[B[6] -> A[2, 8, 1]]] }

2.4.3 Products

A product of two sets (or binary relations) is a set (or binary relation) that
combines the tuples in its arguments into wrapped relations. In case of a binary
relation, it is also possible to only combine the domains or the ranges.

Operation 2.77 (Set Product). The product A × B of two sets A and B is
a set that contains the wrapped pairs of elements obtained by taking the first
element from A and the second element from B. In other words the product of
two sets is the wrap of the universal relation between the two sets. That is,

A×B =W(A→ B)

= { [i→ j] : i ∈ A ∧ j ∈ B }.
(2.32)

In isl, this operation is called isl_union_set_product. In iscc, this
operation is written cross.

Example 2.78. Compare the following transcript to that of Example 2.48 on
page 23.
iscc input ( ):

S := { A[2,8,1]; B[5] };

T := { A[2,8,1]; B[6] };

S cross T;

iscc invocation:

iscc < product.iscc

iscc output:

{ [A[2, 8, 1] -> A[2, 8, 1]]; [A[2, 8, 1] -> B[6]]; [B[5] ->

↪→ A[2, 8, 1]]; [B[5] -> B[6]] }

Operation 2.79 (Binary Relation Product). The product A×B of two binary
relations A and B is a binary relation that contains the pairs of wrapped pairs
of elements obtained by taking the first elements in the wrapped pairs from A
and the second elements from B. That is,

A×B = { [i→m]→ [j → n] : i→ j ∈ A ∧m→ n ∈ B }. (2.33)

In isl, this operation is called isl_union_map_product. In iscc, this
operation is written cross.


S := { A[2,8,1]; B[5] };
T := { A[2,8,1]; B[6] };
S cross T;
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A[2,8,1]

B[5]

B[6]

Figure 2.4: A graph representation of the binary relations in (2.34) (dashed
lines) and (2.35) (dotted lines) along with their product in (2.36) (solid lines)

Example 2.80. Consider the relations

A = {A[2, 8, 1]→ B[5]; B[5]→ B[5] } (2.34)

and
B = {A[2, 8, 1]→ B[6] }. (2.35)

Their product is

A×B = { [A[2, 8, 1]→ A[2, 8, 1]]→ [B[5]→ B[6]];

[B[5]→ A[2, 8, 1]]→ [B[5]→ B[6]] }.
(2.36)

These relations are illustrated in Figure 2.4.
iscc input ( ):

A := { A[2,8,1] -> B[5]; B[5] -> B[5] };

B := { A[2,8,1] -> B[6] };

A cross B;

iscc invocation:

iscc < map_product.iscc

iscc output:

{ [A[2, 8, 1] -> A[2, 8, 1]] -> [B[5] -> B[6]]; [B[5] -> A

↪→ [2, 8, 1]] -> [B[5] -> B[6]] }

Note that the product of two binary relations is different from the universal
relation between the wraps of the binary relations.

Example 2.81. iscc input ( ):

A := { A[2,8,1] -> B[5]; B[5] -> B[5] };

B := { A[2,8,1] -> B[6] };

(wrap A) -> (wrap B);


A := { A[2,8,1] -> B[5]; B[5] -> B[5] };
B := { A[2,8,1] -> B[6] };
A cross B;



A := { A[2,8,1] -> B[5]; B[5] -> B[5] };
B := { A[2,8,1] -> B[6] };
(wrap A) -> (wrap B);
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i j

m n

i j

m n

Figure 2.5: Graphical representation of the zip operation

iscc invocation:

iscc < universe_wrap.iscc

iscc output:

{ [B[5] -> B[5]] -> [A[2, 8, 1] -> B[6]]; [A[2, 8, 1] -> B

↪→ [5]] -> [A[2, 8, 1] -> B[6]] }

The following operation can be used to change the product of binary rela-
tions into the universal relations between the wraps of the binary relations and
vice versa.

Operation 2.82 (Zip). The zip of a binary relation R consists of pairs of
wrapped relations. The first contains the first elements in the wrapped relations
in the first and second element of R. The second contains the second elements
in the wrapped relations in the first and second element of R. That is,

zipR = { [i→m]→ [j → n] : [i→ j]→ [m→ n] ∈ R }. (2.37)

In isl, this operation is called isl_union_map_zip. In iscc, this operation
is written zip. The effect of this operation is shown graphically in Figure 2.5.

Example 2.83. iscc input ( ):

R := { [A[2, 8, 1] -> A[2, 8, 1]] -> [B[5] -> B[6]];

[B[5] -> A[2, 8, 1]] -> [B[5] -> B[6]] };

zip R;

zip (zip R);

iscc invocation:

iscc < zip.iscc

iscc output:

{ [B[5] -> B[5]] -> [A[2, 8, 1] -> B[6]]; [A[2, 8, 1] -> B

↪→ [5]] -> [A[2, 8, 1] -> B[6]] }

{ [A[2, 8, 1] -> A[2, 8, 1]] -> [B[5] -> B[6]]; [B[5] -> A

↪→ [2, 8, 1]] -> [B[5] -> B[6]] }


R := { [A[2, 8, 1] -> A[2, 8, 1]] -> [B[5] -> B[6]];
       [B[5] -> A[2, 8, 1]] -> [B[5] -> B[6]] };
zip R;
zip (zip R);
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Operation 2.84 (Domain Product). The domain product AoB of two binary
relations A and B is a binary relation that maps wrapped pairs of elements,
the first being the first in a pair from A and the second being the first in a pair
from B, to the element that appears as the second in both these pairs from A
and B. That is,

AoB = { [i→ j]→ k : i→ k ∈ A ∧ j → k ∈ B }. (2.38)

In isl, this operation is called isl_union_map_domain_product.

Example 2.85. Consider once more the binary relations from Example 2.80
on page 32. The domain product of the binary relations in (2.34) and (2.35) is
empty because the two relations do not have any range elements in common.
python input ( ):

import isl

r1 = isl.union_map("{ A[2,8,1] -> B[5]; B[5] -> B[5] }")

r2 = isl.union_map("{ A[2,8,1] -> B[6] }")

print r1.domain_product(r2);

python invocation:

python < domain_product.py

python output:

{ }

Operation 2.86 (Range Product). The range product A n B of two binary
relations A and B is a binary relation that maps elements that appear as a
first element in both A and B to the wrapped pairs of corresponding second
elements, the first from A and the second from B. That is,

AnB = { i→ [j → k] : i→ j ∈ A ∧ i→ k ∈ B }. (2.39)

In isl, this operation is called isl_union_map_range_product.

Example 2.87. Consider once more the binary relations from Example 2.80
on page 32. The range product of the binary relations in (2.34) and (2.35) is

AnB = {A[2, 8, 1]→ [B[5]→ B[6]] }. (2.40)

These relations are illustrated in Figure 2.6 on the facing page.
python input ( ):

import isl

r1 = isl.union_map("{ A[2,8,1] -> B[5]; B[5] -> B[5] }")

r2 = isl.union_map("{ A[2,8,1] -> B[6] }")

print r1.range_product(r2)


import isl

r1 = isl.union_map("{ A[2,8,1] -> B[5]; B[5] -> B[5] }")
r2 = isl.union_map("{ A[2,8,1] -> B[6] }")
print r1.domain_product(r2);



import isl

r1 = isl.union_map("{ A[2,8,1] -> B[5]; B[5] -> B[5] }")
r2 = isl.union_map("{ A[2,8,1] -> B[6] }")
print r1.range_product(r2)
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A[2,8,1]

B[5]

B[6]

Figure 2.6: A graph representation of the binary relations in (2.34) (dashed
lines) and (2.35) (dotted lines) along with their range product in (2.40) (solid
lines)

python invocation:

python < range_product.py

python output:

{ A[2, 8, 1] -> [B[5] -> B[6]] }

The arguments that contributed to a product can be extracted again using
the following functions. In the case of isl_union_map_domain_product and
isl_union_map_range_product, only some pairs of elements in the inputs may
have contributed to the product and therefore only these pairs can be extracted
again.

Operation 2.88 (Domain Factor of Product). The domain factor of a binary
relation R consists of those pairs of elements where the first appears as the
first element in the wrapped relation in the first element of a pair of elements
in R and the second appears as the first element in the wrapped relation in the
second element of the same pair in R. That is, the domain factor of R is

{ i→m : ∃j,n : [i→ j]→ [m→ n] ∈ R }. (2.41)

In isl, this operation is called isl_union_map_factor_domain.

Example 2.89. python input ( ):

import isl

r = isl.union_map(

"{ [A[2, 8, 1] -> A[2, 8, 1]] -> [B[5] -> B[6]]; "

"[B[5] -> A[2, 8, 1]] -> [B[5] -> B[6]] }")

print r.factor_domain ()

python invocation:

python < factor_domain.py


import isl

r = isl.union_map(
    "{ [A[2, 8, 1] -> A[2, 8, 1]] -> [B[5] -> B[6]]; "
    "[B[5] -> A[2, 8, 1]] -> [B[5] -> B[6]] }")
print r.factor_domain()
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python output:

{ A[2, 8, 1] -> B[5]; B[5] -> B[5] }

Operation 2.90 (Range Factor of Product). The range factor of a binary
relation R consists of those pairs of elements where the first appears as the
second element in the wrapped relation in the first element of a pair of elements
in R and the second appears as the second element in the wrapped relation in
the second element of the same pair in R. That is, the range factor of R is

{ j → n : ∃i,m : [i→ j]→ [m→ n] ∈ R }. (2.42)

In isl, this operation is called isl_union_map_factor_range.

Example 2.91. python input ( ):

import isl

r = isl.union_map(

"{ [A[2, 8, 1] -> A[2, 8, 1]] -> [B[5] -> B[6]]; "

"[B[5] -> A[2, 8, 1]] -> [B[5] -> B[6]] }")

print r.factor_range ()

python invocation:

python < factor_range.py

python output:

{ A[2, 8, 1] -> B[6] }

Operation 2.92 (Domain Factor of Domain Product). The domain factor of
a binary relation R considered as a domain product consists of those pairs of
elements where the first appears as the first element in the wrapped relation in
the first element of a pair of elements in R and the second is the second element
of that pair in R. That is, the domain factor of R as a domain product is

{ i→ k : ∃j : [i→ j]→ k ∈ R }. (2.43)

In isl, this operation is called isl_union_map_domain_factor_domain.

Example 2.93. python input ( ):

import isl

r = isl.union_map(

"{ [A[2, 8, 1] -> A[2, 8, 1]] -> [B[5] -> B[6]]; "

"[B[5] -> A[2, 8, 1]] -> [B[5] -> B[6]] }")

print r.domain_factor_domain ()

python invocation:


import isl

r = isl.union_map(
    "{ [A[2, 8, 1] -> A[2, 8, 1]] -> [B[5] -> B[6]]; "
    "[B[5] -> A[2, 8, 1]] -> [B[5] -> B[6]] }")
print r.factor_range()



import isl

r = isl.union_map(
    "{ [A[2, 8, 1] -> A[2, 8, 1]] -> [B[5] -> B[6]]; "
    "[B[5] -> A[2, 8, 1]] -> [B[5] -> B[6]] }")
print r.domain_factor_domain()
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python < domain_factor_domain.py

python output:

{ B[5] -> [B[5] -> B[6]]; A[2, 8, 1] -> [B[5] -> B[6]] }

Operation 2.94 (Range Factor of Domain Product). The range factor of a
binary relation R considered as a domain product consists of those pairs of
elements where the first appears as the second element in the wrapped relation
in the first element of a pair of elements in R and the second is the second
element of that pair in R. That is, the range factor of R as a domain product
is

{ j → k : ∃i : [i→ j]→ k ∈ R }. (2.44)

In isl, this operation is called isl_union_map_domain_factor_range.

Example 2.95. python input ( ):

import isl

r = isl.union_map(

"{ [A[2, 8, 1] -> A[2, 8, 1]] -> [B[5] -> B[6]]; "

"[B[5] -> A[2, 8, 1]] -> [B[5] -> B[6]] }")

print r.domain_factor_range ()

python invocation:

python < domain_factor_range.py

python output:

{ A[2, 8, 1] -> [B[5] -> B[6]] }

Operation 2.96 (Domain Factor of Range Product). The domain factor of
a binary relation R considered as a range product consists of those pairs of
elements where the first appears as the first in a pair of elements in R and the
second is the first element in the wrapped relation in the second element of that
pair in R. That is, the domain factor of R as a range product is

{ i→ j : ∃k : i→ [j → k] ∈ R }. (2.45)

In isl, this operation is called isl_union_map_range_factor_domain.

Example 2.97. python input ( ):

import isl

r = isl.union_map("{ A[2, 8, 1] -> [B[5] -> B[6]] }")

print r.range_factor_domain ()

python invocation:


import isl

r = isl.union_map(
    "{ [A[2, 8, 1] -> A[2, 8, 1]] -> [B[5] -> B[6]]; "
    "[B[5] -> A[2, 8, 1]] -> [B[5] -> B[6]] }")
print r.domain_factor_range()



import isl

r = isl.union_map("{ A[2, 8, 1] -> [B[5] -> B[6]] }")
print r.range_factor_domain()
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python < range_factor_domain.py

python output:

{ A[2, 8, 1] -> B[5] }

Operation 2.98 (Range Factor of Range Product). The range factor of a
binary relation R considered as a range product consists of those pairs of ele-
ments where the first appears as the first in a pair of elements in R and the
second is the second element in the wrapped relation in the second element of
that pair in R. That is, the range factor of R as a range product is

{ i→ k : ∃j : i→ [j → k] ∈ R }. (2.46)

In isl, this operation is called isl_union_map_domain_factor_range.

Example 2.99. python input ( ):

import isl

r = isl.union_map("{ A[2, 8, 1] -> [B[5] -> B[6]] }")

print r.range_factor_range ()

python invocation:

python < range_factor_range.py

python output:

{ A[2, 8, 1] -> B[6] }

2.4.4 Domain and Range Projection

The following operations take a binary relation as input and produce a binary
relation that projects a wrapped copy of the input onto its domain or range.

Operation 2.100 (Domain Projection). The domain projection dom−−→R of a
binary relation R is a binary relation that for each pair of elements in R asso-
ciates a wrapped copy of that pair to the first element. That is,

dom−−→R = { [i→ j]→ i : i→ j ∈ R }. (2.47)

In isl, this operation is called isl_union_map_domain_map. See also Sec-
tion 4.2 Creation. In iscc, this operation is written domain_map.

Example 2.101. iscc input ( ):

R := { A[2,8,1] -> B[5]; A[2,8,1] -> B[6]; B[5] -> B[5] };

domain_map R;

iscc invocation:


import isl

r = isl.union_map("{ A[2, 8, 1] -> [B[5] -> B[6]] }")
print r.range_factor_range()



R := { A[2,8,1] -> B[5]; A[2,8,1] -> B[6]; B[5] -> B[5] };
domain_map R;
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iscc < domain_map.iscc

iscc output:

{ [A[2, 8, 1] -> B[6]] -> A[2, 8, 1]; [A[2, 8, 1] -> B[5]]

↪→ -> A[2, 8, 1]; [B[5] -> B[5]] -> B[5] }

Operation 2.102 (Range Projection). The range projection ran−→R of a binary
relation R is a binary relation that for each pair of elements in R associates a
wrapped copy of that pair to the second element. That is,

ran−→R = { [i→ j]→ j : i→ j ∈ R }. (2.48)

In isl, this operation is called isl_union_map_range_map. In iscc, this
operation is written range_map.

Example 2.103. iscc input ( ):

R := { A[2,8,1] -> B[5]; A[2,8,1] -> B[6]; B[5] -> B[5] };

range_map R;

iscc invocation:

iscc < range_map.iscc

iscc output:

{ [A[2, 8, 1] -> B[6]] -> B[6]; [A[2, 8, 1] -> B[5]] -> B

↪→ [5]; [B[5] -> B[5]] -> B[5] }

2.4.5 Difference Set Projection

The difference set of a binary relation contains the differences of the pairs of
elements in the relation. The difference set projection maps the original pairs
to their difference.

Operation 2.104 (Difference Set of a Binary Relation). The difference set
∆R of a binary relation R is a set containing the differences between pairs of
elements in R that have the same space, where the difference between a pair of
elements has the same space as those two elements and has values that are the
difference between the values of the second and those of the first element. That
is,

∆R = {d : ∃x→ y ∈ R : Sd = Sx = Sy ∧ Vd = Vy − Vx }. (2.49)

In isl, this operation is called isl_union_map_deltas. In iscc, this op-
eration is written deltas.

Example 2.105. iscc input ( ):

deltas { A[2,8,1] -> B[5]; B[5] -> B[6]; B[5] -> B[5] };


R := { A[2,8,1] -> B[5]; A[2,8,1] -> B[6]; B[5] -> B[5] };
range_map R;



deltas { A[2,8,1] -> B[5]; B[5] -> B[6]; B[5] -> B[5] };
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iscc invocation:

iscc < deltas.iscc

iscc output:

{ B[1]; B[0] }

Operation 2.106 (Difference Set Projection of a Binary Relation). The dif-
ference set projection ∆−→R of a binary relation R is a binary relation mapping
wrapped pairs of elements in R that have the same space to their difference.
The difference between a pair of elements has the same space as those two el-
ements and has values that are the difference between the values of the second
and those of the first element. That is,

∆−→R = { [x→ y]→ d : x→ y ∈ R∧Sd = Sx = Sy∧Vd = Vy−Vx }. (2.50)

In isl, this operation is called isl_union_map_deltas_map. In iscc, this
operation is written deltas_map.

Example 2.107. iscc input ( ):

deltas_map { A[2,8,1] -> B[5]; B[5] -> B[6]; B[5] -> B[5] };

iscc invocation:

iscc < deltas_map.iscc

iscc output:

{ [B[5] -> B[6]] -> B[1]; [B[5] -> B[5]] -> B[0] }

Notes

2.1. In isl, the identifier of an element consists of a name and an optional
user pointer. For two elements to be considered the same, they need to have
the same name and the same user pointer.
2.2. This notation derives from the notation of the Omega library, where an
element is represented by a comma delimited list of the integer values enclosed
in square brackets. Identifiers were introduced in isl by Verdoolaege (2011).
Similar notations have also been used by, e.g., Pugh (1991b) and Maslov (1994).
2.3. The reason that this type is called isl_union_set is that isl also has
an isl_set type. See Section 3.6 Space-Local Operations.
2.4. The -> notation is also inherited from the notation of the Omega library.
2.5. The 0-th power is not defined because it would have to be an identity
relation on all named integer tuples, which is impossible to represent in isl,
even intensionally.


deltas_map { A[2,8,1] -> B[5]; B[5] -> B[6]; B[5] -> B[5] };




Chapter 3

Presburger Sets and Relations

In the previous chapter, sets and binary relations were described extensionally
by explicitly listing the (pairs of) element(s) contained in the set or binary
relation. This chapter explains how to describe sets and binary relations inten-
sionally through properties that need to be satisfied by the (pairs of) element(s).
As in the previous chapter, sets and relations will continue to be treated purely
abstractly.

3.1 Intensional Descriptions

In an intensional description, the elements of a set are described in terms of
structured named integer tuple templates. These are essentially the same as
structured named integer tuples, except that the integers have been replaced by
variables. Compare the following definitions to Definition 2.66 on page 28, Def-
inition 2.68 on page 29 and Definition 2.70 on page 29.

Definition 3.1 (Structured Named Integer Tuple Template). A structured
named integer tuple template is either

• an identifier n along with d ≥ 0 variables ij for 0 ≤ j < d, written
n[i0, i1, . . . , id−1], or,

• an identifier n along with two structured named integer tuple templates i
and j written n[i→ j].

Definition 3.2 (Space). The space Si of a structured named integer tuple
template i is

• n/d, if i is of the form n[i0, i1, . . . , id−1], with n an identifier and d a
non-negative integer, or,

• (n,S(j),S(k)), if i is of the form n[j → k], with n an identifier and j
and k structured named integer tuple templates.

41
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The space of a pair of structured named integer tuple templates i → j is
(S(i),S(j)).

Definition 3.3 (Variable Vector). The variable vector Vi of a structured
named integer tuple template i is the vector

• (i0, i1, . . . , id−1), if i is of the form n[i0, i1, . . . , id−1], with n an identifier
and d a non-negative integer, or,

• V(j)‖V(k), with ‖ the concatenation of two vectors, if i is of the form
n[j → k], with n an identifier and j and k structured named integer tuple
templates.

The variable vector of a pair of structured named integer tuple templates
i→ j is V(i)‖(Vj).

The notations for sets and binary relations are then redefined in terms of
these templates.

Notation 3.4 (Set). The notation for a set is formed by a semicolon delimited
list of element descriptions enclosed in braces. An element description consists
of a template followed by a colon and a formula in terms of the variables in the
template.

Within each formula the elements of the variable vector of the corresponding
tuple are known as the set variables.

Notation 3.5 (Binary Relation). The notation for a binary relation is formed
by a semicolon delimited list of element-pair descriptions enclosed in braces.
An element-pair description consists of a pair of templates, separated by an
arrow and followed by a colon and a formula in terms of the variables in the
pair of templates.

An integer tuple i belongs to a set iff the set description contains an element
description such that the tuple template has the same space as i and such that
the value vector of i satisfies the corresponding formula. Similarly for binary
relations. The exact nature of the formulas and their satisfaction is described
in Section 3.2 Presburger Formulas.

Example 3.6. The set

{B[i] : 5 ≤ i ≤ 6; C[] : } (3.1)

is equal to the set

{B[5]; B[6]; C[] } (3.2)

in the notation of Chapter 2 Sets of Named Integer Tuples.
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3.2 Presburger Formulas

A Presburger formula is a specific instance of the concept of a first order for-
mula. This general concept is defined first.

Definition 3.7 (Language). A language

L = { f1/r1, f2/r2, . . . , P1/s1, P2/s2, . . . } (3.3)

is a collection of function symbols fi and predicate symbols Pi, each with their
own arity r1 or si, i.e., the number of arguments they require. A function with
arity zero is called a constant.

Definition 3.8 (Term). A term in a language L is inductively defined as either

• v, with v a variable, or,

• fi(t1, . . . , tri), with fi a function symbol in L with arity ri and tj terms
for 1 ≤ j ≤ ri. In particular, if ri = 0, then fi() is a term.

Definition 3.9 (First Order Formula). A first order formula in a language L
is inductively defined as either Note 3.1

• true,

• Pi(t1, . . . tsi), with Pi a predicate symbol in L with arity si and tj terms
in L for 1 ≤ j ≤ si,

• t1 = t2, for t1 and t2 terms in L,

• F1 ∧ F2, called the conjunction of two formulas F1 and F2,

• F1 ∨ F2, called the disjunction of two formulas F1 and F2,

• ¬F , called the negation of formula F ,

• ∃v : F , the existential quantification of formula F over the variable v,
or,

• ∀v : F , the universal quantification of formula F over the variable v.

Definition 3.10 (Free and Bound Variables). An occurrence of variable v is
said to be bound in a formula F if F has a subformula ∃v : F1 or ∀v : F2 and
v appears inside F1 or F2. The occurrence is said to be free otherwise.

Note that the same variable can appear as both a free and a bound variable
in the same formula, but at different occurrences.

Definition 3.11 (Closed Formula). A formula is called closed if it does not
contain any free variables.

Definition 3.12 (Presburger Language). The Presburger language is the first
order language with as function symbols Note 3.2
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• +/2

• −/2

• a constant symbol d/0 for each integer d

• a unary function symbol b·/dc for each positive integer dNote 3.3

• a set of constant symbols ci/0Note 3.4

and as single predicate symbol

• ≤ /2.

Definition 3.13 (Presburger Term). A Presburger term is a term in the Pres-
burger language.

Definition 3.14 (Presburger Formula). A Presburger formula is a first orderNote 3.5

formula in the Presburger language.

In order to be able to evaluate whether a first order formula is satisfied, a
domain of discourse and an interpretation for all the function and predicate
symbols need to be considered. The domain of discourse (or “universe”) is the
set of values that is used for the variables in the formulas. The interpretation
maps a function or predicate symbol to an actual function or predicate. In the
case of Presburger formulas, the domain of discourse is the set of integers Z.Note 3.6

Definition 3.15 (Interpretation of Presburger Symbols). The following inter-
pretation is given to the function and predicate symbols in Presburger formulas.

• the function symbol +/2 is mapped to the function that adds two integers;

• the function symbol −/2 is mapped to the function that subtracts the
second integer argument from the first;

• each constant symbol d/0 is mapped to the corresponding integer value;

• each function symbol b·/dc is mapped to the function that returns the
result of the integer division of its integer argument by d;

• the predicate symbol ≤ /2 is mapped to the less-than-or-equal relation on
integers.

The constant symbols ci are not assigned a fixed interpretation. Instead,
all possible interpretations as integers are considered. The interpretation of a
Presburger term is the result of recursively applying the interpretation to the
function symbols that appear in the term.

The following definition defines the concept of the truth value of a general
first order formula in terms of the domain of discourse (or universe) and the
interpretation of the symbols. The definition makes use of substitutions of the
form F{v 7→ d}, which refers to the result of replacing every free occurrence of
v in F by d.
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Definition 3.16 (Truth Value). The truth value of a first order formula in a
given universe and interpretation is determined as follows.

• The formula true is true.

• The formula Pi(t1, . . . tsi) is true if the interpretation of Pi applied to the
interpretations of tj is true.

• The formula t1 = t2 is true if the interpretations of t1 and t2 are equal.

• The formula F1 ∧ F2 is true if both F1 and F2 are true.

• The formula F1 ∨ F2 is true if at least one of F1 or F2 is true.

• The formula ¬F is true if F is not true.

• The formula ∃v : F (v) is true if F{v 7→ d} is true for some d in the
universe.

• The formula ∀v : F (v) is true if F{v 7→ d} is true for every d in the
universe.

3.3 Presburger Sets and Relations

Definition 3.17 (Presburger Set). A Presburger set is a set in the nota-
tion of Notation 3.4 on page 42 where the formula is a Presburger formula as
in Definition 3.14 on the preceding page. The only free variables allowed in this
formula are the variables of the tuple template.

Definition 3.18 (Presburger Relation). A Presburger relation is a binary
relation in the notation of Notation 3.5 on page 42 where the formula is a
Presburger formula as in Definition 3.14 on the preceding page. The only free
variables allowed in this formula are the variables of the pair of tuple templates.

As already explained in Section 3.1 Intensional Descriptions, an integer
tuple i belongs to a set iff the set description contains an element description
t : F such that the tuple template has the same space as i, i.e., Si = St,
and such that the value vector of i satisfies the corresponding formula, i.e.,
F{Vt 7→ Vi} is true.

Example 3.19. The set

{ [i] : 0 ≤ i ∧ i ≤ 10 ∧ ∃α : i = α+ α } (3.4)

is equal to the set

{ [0]; [2]; [4]; [6]; [8]; [10] }. (3.5)
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Example 3.20. The set

{ [i] : ∀i : 0 ≤ i ∧ i ≤ 10 } (3.6)

is empty because the subformula 0 ≤ i∧ i ≤ 10 is only true for some values of i,
but not all integer values of i. This means that the formula ∀i : 0 ≤ i ∧ i ≤ 10
is not true and there are therefore no values of the tuple variable i for which
this formula is true.

If the formula in an element description contains any constant symbols,
then the truth value of the formula may depend on the interpretation of these
constant symbols. As such, a Presburger set essentially represents a family of
sets, one for each value of the constant symbols.

Example 3.21. Consider the Presburger set

{ S[i] : 0 ≤ i ∧ i ≤ n }. (3.7)

Depending on the value assigned to the constant symbol n, this description
corresponds to one of the following sets.

∅ if n < 0

{ S[0] } if n = 0

{ S[0]; S[1] } if n = 1

{ S[0]; S[1]; S[2] } if n = 2

. . .

(3.8)

Table 3.1 on the facing page shows the isl notation for the first order
logic connectives of Definition 3.9 on page 43 and the Presburger symbols
of Definition 3.12 on page 43, along with some syntactic sugar that will be
explained in Section 3.4 Syntactic Sugar.

Notation 3.22 (Constant Symbols). In this text, a constant symbol will by
typeset in roman type. In isl, a constant symbol is called a parameter. A
parameter has the same appearance as a variable, but it has to be declared in
front of the set or binary relation description. In particular, all parameters
need to be placed in a comma separated list enclosed in brackets and followed
by a -> in front of the set or binary relation description. The order of the
parameters inside the list is immaterial.

Example 3.23. Consider the set in (3.7). Its isl representation is as follows.

[n] -> { S[i] : 0 <= i and i <= n }

In some cases, it can be convenient to reason about the values of the con-
stant symbols for which a given set or relation is non-empty. They can be
represented as a unit set, which is a set that does not contain any tuples, but
that is still considered empty or non-empty depending on the values of the
constant symbols. The notation for unit sets is similar to that of sets in Nota-
tion 3.4 on page 42, except that it does not contain any tuple templates.
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+ +

− -

= =

≤ <=

< <

≥ >=

> >

6= !=

, ,

· *

4 <<=

≺ <<

< >>=

� >>

mod mod

true true

false false

∧ and or & or && or /\
∨ or or | or || or \/
¬ not or !
=⇒ implies

∃v : exists v :

∀v : not exists v : not

Table 3.1: isl notation for Presburger formulas

Notation 3.24 (Unit Set). The notation for a unit set is formed by a colon
and a constant formula (depending only on the symbolic constants) enclosed in
braces.

In isl, unit sets are called parameter sets and they are represented by an
isl_set.

Example 3.25. The conditions under which the set in (3.7) is non-empty can
be described as

{ : n ≥ 0 }, (3.9)

or, in isl notation

[n] -> { : n >= 0 }

Most of the operations defined in Chapter 2 Sets of Named Integer Tuples
are not affected by the presence of constant symbols. The operation is sim-
ply applied uniformly for all possible values of those constant symbols. Some
operations, in particular the comparison operations, are affected, however.
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Operation 3.26 (Equality of Sets). Two sets A and B are equal (A = B) if
they contain the same elements for every value of the constant symbols.

Example 3.27. The set
{ a[i] : i ≥ 0 } (3.10)

is not equal to the set
{ a[i] : i ≥ 0 ∧ n ≥ 0 } (3.11)

because the second set is empty when n is negative, while the first one contains
infinitely many elements for any value of n.
iscc input ( ):

A := [n] -> { A[i] : i >= 0 };

B := [n] -> { A[i] : i >= 0 and n >= 0 };

A = B;

iscc invocation:

iscc < set_equal_constant.iscc

iscc output:

False

Example 3.28. The set

{ a[i] : 0 ≤ i < n } (3.12)

is not equal to the set
{ a[i] : 0 ≤ i < m } (3.13)

because the constant symbols n and m do not necessarily have the same value.
iscc input ( ):

A := [n] -> { A[i] : 0 <= i < n };

B := [m] -> { A[i] : 0 <= i < m };

A = B;

iscc invocation:

iscc < set_equal_constant2.iscc

iscc output:

False

Example 3.29. The set

{ a[n, i] : 0 ≤ i < n } (3.14)

is equal to the set
{ a[m, i] : 0 ≤ i < m } (3.15)

because the two sets contain the same pairs of integers.
iscc input ( ):


A := [n] -> { A[i] : i >= 0 };
B := [n] -> { A[i] : i >= 0 and n >= 0 };
A = B;



A := [n] -> { A[i] : 0 <= i < n };
B := [m] -> { A[i] : 0 <= i < m };
A = B;



A := { A[n, i] : 0 <= i < n };
B := { A[m, i] : 0 <= i < m };
A = B;
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A := { A[n, i] : 0 <= i < n };

B := { A[m, i] : 0 <= i < m };

A = B;

iscc invocation:

iscc < set_equal2.iscc

iscc output:

True

Operation 3.30 (Equality of Binary Relations). Two binary relations A and
B are equal (A = B) if they contain the same pairs of elements for every value
of the constant symbols.

Operation 3.31 (Emptiness of a Set). A set is empty if it does not contain
any element for any value of the constant symbols.

Example 3.32. The set in (3.15) is only empty for some values of the constant
n, but not for all values. It is therefore not considered to be empty.
iscc input ( ):

[n] -> { A[i] : i >= 0 and n >= 0 } = { };

iscc invocation:

iscc < set_empty_constant.iscc

iscc output:

False

Operation 3.33 (Emptiness of a Binary Relation). A binary relation is empty
if it does not contain any pair of elements for any value of the constant symbols.

Operation 3.34 (Subset). The set A is a subset of the set B, A ⊆ B, if all
elements of A are contained in B for every value of the constant symbols, i.e.,
if A \B = ∅.

Example 3.35. iscc input ( ):

A := [n] -> { A[i] : i >= 0 };

B := [n] -> { A[i] : i >= 0 and n >= 0 };

B <= A;

iscc invocation:

iscc < set_subset_constant.iscc

iscc output:


[n] -> { A[i] : i >= 0 and n >= 0 } = { };



A := [n] -> { A[i] : i >= 0 };
B := [n] -> { A[i] : i >= 0 and n >= 0 };
B <= A;
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True

Operation 3.36 (Subrelation). The binary relation A is a subset of the binary
relation B, A ⊆ B, if all pairs of elements in A are contained in B for every
value of the constant symbols, i.e., if A \B = ∅.

Operation 3.37 (Strict Subset). The set A is a strict (or proper) subset of
the set B, A ( B, if all elements of A are contained in B for every value of
the constant symbols and B contains elements not in A for some value of the
constant symbols, i.e., if A \B = ∅ and A 6= B.

Example 3.38. iscc input ( ):

A := [n] -> { A[i] : i >= 0 };

B := [n] -> { A[i] : i >= 0 and n >= 0 };

B < A;

iscc invocation:

iscc < set_strict_subset_constant.iscc

iscc output:

True

Operation 3.39 (Strict Subrelation). The binary relation A is a strict (or
proper) subset of the binary relation B, A ( B, if all pairs of elements of A
are contained in B for every value of the constant symbols and B contains pairs
of elements not in A for some value of the constant symbols, i.e., if A \B = ∅
and A 6= B.

Operation 3.40 (Superset). The set A is a superset of the set B, A ⊇ B, if
all elements of B are contained in A for every value of the constant symbols,
i.e., if B ⊆ A.

Operation 3.41 (Superrelation). The binary relation A is a superset of the
binary relation B, A ⊇ B, if all pairs of elements in B are contained in A for
every value of the constant symbols, i.e., if B ⊆ A.

Operation 3.42 (Strict Superset). The set A is a strict (or proper) superset
of the set B, A ) B, if all elements of B are contained in A for every value of
the constant symbols and A contains elements not in B for some value of the
constant symbols, i.e., if B ( A.

Operation 3.43 (Strict Superrelation). The binary relation A is a strict (or
proper) superset of the binary relation B, A ) B, if all pairs of elements in B
are contained in A for every value of the constant symbols and A contains pairs
of elements not in B for some value of the constant symbols, i.e., if B ( A.


A := [n] -> { A[i] : i >= 0 };
B := [n] -> { A[i] : i >= 0 and n >= 0 };
B < A;
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Operation 3.44 (Single-valued). A binary relation R is single-valued, i.e.,
a function, if every element that appears as the second element in a pair of
elements in R only appears as the second element in one such pair for every
value of the constant symbols.

Operation 3.45 (Injective). A binary relation R is injective if every element
that appears as the first element in a pair of elements in R only appears as the
first element in one such pair for every value of the constant symbols, i.e., if
its inverse is single-valued.

3.4 Syntactic Sugar

Notation 3.46 (False). The formula false is equivalent to ¬true.

Notation 3.47 (Implication). The formula a =⇒ b is equivalent to ¬a ∨ b.

The formula following the tuple template in Notation 3.4 on page 42 and No-
tation 3.5 on page 42 is optional. If the formula is missing, then it is taken to
be true.

Example 3.48. iscc input ( ):

A := { A[i] : true };

B := { A[i] };

A = B;

iscc invocation:

iscc < missing_formula.iscc

iscc output:

True

The variables in a tuple template may be replaced by Presburger terms that
only involve variables that appear in earlier positions in the template. Note 3.7

Notation 3.49. Let v = (v1, . . . , vn) = Vt be the variables of a tuple tem-
plate t. An element description t : vk = g(v1, . . . , vk−1 ∧ f(v) may be rewritten
as t{vk 7→ g(v1, . . . , vk−1} : f(v).

Example 3.50. The binary relation

{S[i]→ S[i+ 1] } (3.16)

is equal to
{ S[i]→ S[j] : j = i+ 1 }. (3.17)

Note, however, that the syntax { S[j−1]→ S[j] } is not allowed since the expres-
sion j − 1 contains variables other than those that appear in earlier positions.
iscc input ( ):


A := { A[i] : true };
B := { A[i] };
A = B;



A := { S[i] -> S[i + 1] };
B := { S[i] -> S[j] : j = i + 1 };
A = B;
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A := { S[i] -> S[i + 1] };

B := { S[i] -> S[j] : j = i + 1 };

A = B;

iscc invocation:

iscc < tuple_expression.iscc

iscc output:

True

Notation 3.49 on the preceding page, together with the optionality of the
formula in the element description, allows the syntax of Chapter 2 Sets of
Named Integer Tuples to be treated as a special case of the present syntax
since a tuple N [d] can be treated as the element description N [v] : v = d,
representing the same element.

Notation 3.51. The symbol < /2 represents the less-than relation on integers.
The formula a < b is equivalent to a ≤ b− 1.

Notation 3.52. The symbol ≥ /2 represents the greater-than-or-equal relation
on integers. The formula a ≥ b is equivalent to b ≤ a.

Notation 3.53. The symbol > /2 represents the greater-than relation on in-
tegers. The formula a > b is equivalent to a ≥ b+ 1.

Notation 3.54. The symbol 6= /2 represents the not-equal relation on integers.
The formula a 6= b is equivalent to ¬(a = b).

Notation 3.55. The same comparison can be performed on multiple arguments
by separating the arguments with a comma. The formula a, b ⊕ c, where ⊕ ∈
{≤, <,≥, >,=, 6= }, is equivalent to a⊕ c ∧ b⊕ c.

Example 3.56. The set

{ S[i, j] : i, j ≥ 0 } (3.18)

is equal to
{ S[i, j] : i ≥ 0 ∧ j ≥ 0 }. (3.19)

iscc input ( ):

A := { S[i,j] : i,j >= 0 };

B := { S[i,j] : i >= 0 and j >= 0 };

A = B;

iscc invocation:

iscc < comma.iscc

iscc output:


A := { S[i,j] : i,j >= 0 };
B := { S[i,j] : i >= 0 and j >= 0 };
A = B;
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True

Notation 3.57. Operators can be chained. That is, a given argument may
be used as both the right hand side of one operator and the left hand side
of the next operator. In particular, a formula of the form a ⊕1 b ⊕2 c, with
{⊕1,⊕2 } ⊂ {≤, <,≥, >,=, 6= }, is equivalent to a⊕1 b ∧ b⊕2 c.

Example 3.58. The set

{S[i] : 0 ≤ i ≤ 10 } (3.20)

is equal to
{ S[i] : 0 ≤ i ∧ i ≤ 10 }. (3.21)

iscc input ( ):

A := { S[i] : 0 <= i <= 10 };

B := { S[i] : 0 <= i and i <= 10 };

A = B;

iscc invocation:

iscc < chain.iscc

iscc output:

True

Notation 3.59. The unary function −/1 represents the negation on integers.
That is, the formula −a is equivalent to 0− a.

Notation 3.60. The notation n · e, with n a non-negative integer constant, is
a shorthand for

e+ e+ · · ·+ e︸ ︷︷ ︸
n times

. (3.22)

The dot (·) may also be omitted.

An actual multiplication, where the left-hand side is a variable or a constant
symbol, is not allowed in Presburger formulas.

Example 3.61. The set

{ [i] : 0 ≤ i ≤ 10 ∧ i = 2n } (3.23)

is equal to the set { [2n] } when the value assigned to the constant symbol n
satisfies 0 ≤ n ≤ 5 and is equal to the empty set otherwise.

Notation 3.62. The formula a mod b, with b a non-negative integer constant,
is equivalent to a− b · ba/bc.


A := { S[i] : 0 <= i <= 10 };
B := { S[i] : 0 <= i and i <= 10 };
A = B;
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The following symbols deal with lexicographic order, which is defined first.

Definition 3.63 (Lexicographic Order). Given two vectors a and b of equal
length, a is said to be lexicographically smaller than b if it is not equal to b and
if it is smaller in the first position in which it differs from b. If the shared length
of the two vectors is n, then this condition can be expressed as the Presburger
formulaNote 3.8 ∨

i:1≤i≤n

 ∧
j:1≤j<i

aj = bj

 ∧ ai < bi

 . (3.24)

Notation 3.64. The symbol ≺ /2 represents the lexicographically smaller-than
relation on equal-length sequences of integers. That is, a ≺ b, with a and b
two sequences of length n, if the elements in the sequences satisfy the formula
in (3.24).

Example 3.65. The binary relation

{ S[i1, i2]→ S[j1, j2] : i1, i2 ≺ j1, j2 } (3.25)

is equal to

{ S[i1, i2]→ S[j1, j2] : i1 < j1 ∨ (i1 = j1 ∧ i2 < j2) }. (3.26)

iscc input ( ):

A := { S[i1 ,i2] -> S[j1 ,j2] : i1 ,i2 << j1 ,j2 };

B := { S[i1 ,i2] -> S[j1 ,j2] :

i1 < j1 or (i1 = j1 and i2 < j2) };

A = B;

iscc invocation:

iscc < lex.iscc

iscc output:

True

Alternative 3.66 (Extended Lexicographic Order). Some authors con-
sider an extended form of lexicographic order that is also defined on pairs
of vectors of different sizes. The shorter vector is then typically compared
to the initial elements of the longer vector. This still leaves the issue of
how two vectors compare if one is a proper prefix of the other. For this
issue, it is either assumed that no such comparison is ever performed or
some implicit order is defined.

Notation 3.67. The symbol 4 /2 represents the lexicographically smaller-
than-or-equal relation on equal-length sequences of integers. That is, a 4 b is
equivalent to a ≺ b ∨ a = b.


A := { S[i1,i2] -> S[j1,j2] : i1,i2 << j1,j2 };
B := { S[i1,i2] -> S[j1,j2] :
       i1 < j1 or (i1 = j1 and i2 < j2) };
A = B;




3.5. LEXICOGRAPHIC ORDER 55

Notation 3.68. The symbol � /2 represents the lexicographically greater-than
relation on equal-length sequences of integers. That is, a � b is equivalent to
b ≺ a.

Notation 3.69. The symbol < /2 represents the lexicographically greater-than-
or-equal relation on equal-length sequences of integers. That is, a < b is equiv-
alent to a � b ∨ a = b.

3.5 Lexicographic Order

The lexicographic order of Definition 3.63 on the preceding page is defined on
a pair of vectors, but this concept can be extended to a pair of sets. The result
is then a binary relation that contains pairs of elements from the two sets such
that the first is lexicographically smaller than the second. Since it only makes
sense to lexicographically compare two elements that have the same space, this
means in particular that the pairs of elements in the result have the same space.

Operation 3.70 (Lexicographically-smaller-than Relation on Sets). The lexi-
cographically-smaller-than relation A ≺ B on two sets A and B is a binary
relation that contains pairs of elements, one from A and one from B such that
the two elements have the same space and the first is lexicographically smaller
than the second. That is,

A ≺ B = {a→ b : a ∈ A ∧ b ∈ B ∧ Sa = Sb ∧ Va ≺ Vb }. (3.27)

In isl, this operation is called isl_union_set_lex_lt_union_set. In
iscc, this operation is written <<.

Operation 3.71 (Lexicographically-smaller-than-or-equal Relation on Sets).
The lexicographically-smaller-than-or-equal relation A 4 B on two sets A and
B is a binary relation that contains pairs of elements, one from A and one
from B such that the two elements have the same space and the first is lexico-
graphically smaller than or equal to the second. That is,

A 4 B = {a→ b : a ∈ A ∧ b ∈ B ∧ Sa = Sb ∧ Va 4 Vb }. (3.28)

In isl, this operation is called isl_union_set_lex_le_union_set. In
iscc, this operation is written <<=.

Operation 3.72 (Lexicographically-greater-than Relation on Sets). The lexi-
cographically-greater-than relation A � B on two sets A and B is a binary
relation that contains pairs of elements, one from A and one from B such that
the two elements have the same space and the first is lexicographically greater
than the second. That is,

A � B = {a→ b : a ∈ A ∧ b ∈ B ∧ Sa = Sb ∧ Va � Vb }. (3.29)

In isl, this operation is called isl_union_set_lex_gt_union_set. In
iscc, this operation is written >>.
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Operation 3.73 (Lexicographically-greater-than-or-equal Relation on Sets).
The lexicographically-greater-than-or-equal relation A < B on two sets A and
B is a binary relation that contains pairs of elements, one from A and one
from B such that the two elements have the same space and the first is lexico-
graphically greater than or equal to the second. That is,

A < B = {a→ b : a ∈ A ∧ b ∈ B ∧ Sa = Sb ∧ Va < Vb }. (3.30)

In isl, this operation is called isl_union_set_lex_ge_union_set. In
iscc, this operation is written >>=.

Example 3.74. The following transcript shows the different lexicographic or-
der relations computed from the sets

{A[i, j] : 0 ≤ i, j < 10; B[]; C[i] : 0 ≤ i < 100 } (3.31)

and
{A[i, j] : 0 ≤ i, j < 20; B[] }. (3.32)

iscc input ( ):

A := { A[i,j] : 0 <= i,j < 10; B[]; C[i] : 0 <= i < 100 };

B := { A[i,j] : 0 <= i,j < 20; B[] };

A << B;

A <<= B;

A >> B;

A >>= B;

iscc invocation:

iscc < lexorder.iscc

iscc output:

{ A[i, j] -> A[i’, j’] : 0 <= i <= 9 and 0 <= j <= 9 and i’

↪→ > i and 0 <= i’ <= 19 and 0 <= j’ <= 19; A[i, j] -> A

↪→ [i, j’] : 0 <= i <= 9 and 0 <= j <= 9 and j’ > j and

↪→ 0 <= j’ <= 19 }

{ A[i, j] -> A[i’, j’] : 0 <= i <= 9 and 0 <= j <= 9 and i’

↪→ > i and 0 <= i’ <= 19 and 0 <= j’ <= 19; A[i, j] -> A

↪→ [i, j’] : 0 <= i <= 9 and 0 <= j <= 9 and j’ >= j and

↪→ 0 <= j’ <= 19; B[] -> B[] }

{ A[i, j] -> A[i’, j’] : 0 <= i <= 9 and 0 <= j <= 9 and 0

↪→ <= i’ <= 19 and i’ < i and 0 <= j’ <= 19; A[i, j] ->

↪→ A[i, j’] : 0 <= i <= 9 and 0 <= j <= 9 and 0 <= j’ <=

↪→ 19 and j’ < j }

{ B[] -> B[]; A[i, j] -> A[i’, j’] : 0 <= i <= 9 and 0 <= j

↪→ <= 9 and 0 <= i’ <= 19 and i’ < i and 0 <= j’ <= 19;

↪→ A[i, j] -> A[i, j’] : 0 <= i <= 9 and 0 <= j <= 9 and

↪→ 0 <= j’ <= 19 and j’ <= j }


A := { A[i,j] : 0 <= i,j < 10; B[]; C[i] : 0 <= i < 100 };
B := { A[i,j] : 0 <= i,j < 20; B[] };
A << B;
A <<= B;
A >> B;
A >>= B;
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The same operations are also available on binary relations, but in this case
the comparison is performed on the range elements of the input relations and
the result collects the corresponding domain elements.

Operation 3.75 (Lexicographically-smaller-than Relation on Binary Rela-
tions). The lexicographically-smaller-than relation A ≺ B on two binary rela-
tions A and B is a binary relation that contains pairs of elements, one from
the domain of A and one from the domain of B, that have corresponding range
elements such that the first is lexicographically smaller than the second. That
is,

A ≺ B = {a→ b : ∃c,d : a→ c ∈ A ∧ b→ d ∈ B ∧ Sc = Sd ∧ Vc ≺ Vd }.
(3.33)

In isl, this operation is called isl_union_map_lex_lt_union_map. In
iscc, this operation is written <<.

Operation 3.76 (Lexicographically-smaller-than-or-equal Relation on Binary
Relations). The lexicographically-smaller-than-or-equal relation A 4 B on two
binary relations A and B is a binary relation that contains pairs of elements,
one from the domain of A and one from the domain of B, that have corre-
sponding range elements such that the first is lexicographically smaller than or
equal to the second. That is,

A 4 B = {a→ b : ∃c,d : a→ c ∈ A ∧ b→ d ∈ B ∧ Sc = Sd ∧ Vc 4 Vd }.
(3.34)

In isl, this operation is called isl_union_map_lex_le_union_map. In
iscc, this operation is written <<=.

Operation 3.77 (Lexicographically-greater-than Relation on Binary Rela-
tions). The lexicographically-greater-than relation A � B on two binary rela-
tions A and B is a binary relation that contains pairs of elements, one from
the domain of A and one from the domain of B, that have corresponding range
elements such that the first is lexicographically greater than the second. That
is,

A � B = {a→ b : ∃c,d : a→ c ∈ A ∧ b→ d ∈ B ∧ Sc = Sd ∧ Vc � Vd }.
(3.35)

In isl, this operation is called isl_union_map_lex_gt_union_map. In
iscc, this operation is written >>.

Operation 3.78 (Lexicographically-greater-than-or-equal Relation on Binary
Relations). The lexicographically-greater-than-or-equal relation A < B on two
binary relations A and B is a binary relation that contains pairs of elements,
one from the domain of A and one from the domain of B, that have corre-
sponding range elements such that the first is lexicographically greater than or
equal to the second. That is,

A < B = {a→ b : ∃c,d : a→ c ∈ A ∧ b→ d ∈ B ∧ Sc = Sd ∧ Vc < Vd }.
(3.36)
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In isl, this operation is called isl_union_map_lex_ge_union_map. In
iscc, this operation is written >>=.

Example 3.79. iscc input ( ):

A := { A[i,j] -> [i,0,j] };

B := { B[i,j] -> [j,1,i] };

A << B;

iscc invocation:

iscc < lexorder_map.iscc

iscc output:

{ A[i, j] -> B[i’, j’] : j’ > i; A[i, j] -> B[i’, i] }

3.6 Space-Local Operations

Some operations are performed separately for each (pair of) space(s) of elements
in a set or binary relation. Such operations are called space-local. A typical
example is lexicographic optimization. The basic assumption is that only el-
ements within the same space can be compared to each other. In particular,
only within a given space can two elements be compared lexicographically. This
should be clear for spaces with different dimensions, barring Alternative 3.66
Extended Lexicographic Order, but it also holds for spaces with different iden-
tifiers or a different internal structure.

The space decomposition of a set partitions the elements in the set according
to their spaces.

Operation 3.80 (Space Decomposition of a Set). Given a set S, its space
decomposition DS is the unique collection of sets Si such that the union of the
Si is equal to S, all elements of a given Si have the same space and no two
elements from distinct Si have the same space. That is, let {Ui }i := {U :
∃x ∈ S : U = Sx } be the collection of spaces of elements in S. For each i, let

Si := {x : x ∈ S ∧ Sx = Ui }. (3.37)

Then DS = {Si }i.

In isl, this operation is called isl_union_set_foreach_set. This func-
tion takes a set (an isl_union_set) and a callback that is called for each set
in the space decomposition of the input set. Each such set is represented by an
isl_set. In contrast to an isl_union_set, all elements of an isl_set have
the same space. This space is then also the space of the isl_set. In fact, each
isl_set, even an empty one, has its own predetermined space.

Example 3.81. The following transcript shows an example of splitting up a
set along the spaces of its elements.
python input ( ):


A := { A[i,j] -> [i,0,j] };
B := { B[i,j] -> [j,1,i] };
A << B;



import isl

def print_set(set):
    print set

s = isl.union_set("{ B[6]; A[2,8,1]; B[5] }")
s.foreach_set(print_set)
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import isl

def print_set(set):

print set

s = isl.union_set("{ B[6]; A[2,8,1]; B[5] }")

s.foreach_set(print_set)

python invocation:

python < sets_in_union_set.py

python output:

{ B[6]; B[5] }

{ A[2, 8, 1] }

Operation 3.82 (Space Decomposition of a Binary Relation). Given a binary
relation R, its space decomposition DR is the unique collection of binary re-
lations Ri such that the union of the Ri is equal to R, all pairs of elements
in a given Ri have the same pair of spaces and no two pairs of elements from
distinct Ri have the same pair of spaces. That is, let {Ui → Vi }i := {U → V :
∃x → y ∈ R : U = Sx ∧ V = Sy } be the collection of pairs of spaces of pairs
of elements in R. For each i, let

Ri := {x→ y : x→ y ∈ R ∧ Sx = Ui ∧ Sy = Vi }. (3.38)

Then DR = {Ri }i.

In isl, this operation is called isl_union_map_foreach_map. Similarly
to isl_union_set_foreach_set above, this function calls a callback on each
binary relation in the space decomposition, where each such binary relation is
represented by an isl_map. As in the case of an isl_set, all pairs of elements
in an isl_map have the same pair of spaces. These two spaces are called the
domain space and the range space of the isl_map.

Lexicographic optimization can now be defined in terms of the space de-
composition.

Operation 3.83 (Lexiographic Maximum of a Set). The lexicographic maxi-
mum lexmaxS of a set S is a subset of S that contains the lexicographically
maximal element of each of the spaces with elements in S. If there is any
such space with no lexicographically maximal element, then the operation is
undefined. That is, let DS =: {Si }i. Define

Mi := {x : x ∈ Si ∧ ∀y ∈ Si : Vx < Vy }. (3.39)

Then
lexmaxS =

⋃
i

Mi. (3.40)
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In isl, this operation is called isl_union_set_lexmax. In iscc, this op-
eration is written lexmax.

Example 3.84. iscc input ( ):

S := { B[6]; A[2,8,1]; B[5] };

lexmax S;

iscc invocation:

iscc < lexmax.iscc

iscc output:

{ B[6]; A[2, 8, 1] }

Note that if the description of the set involves constant symbols, then the
lexicographic maximum may be different for each value of the constant symbols.

Example 3.85. iscc input ( ):

S := [n] -> { A[i,j] : i,j >= 0 and i + j <= n };

lexmax S;

iscc invocation:

iscc < lexmax2.iscc

iscc output:

[n] -> { A[n, 0] : n >= 0 }

Example 3.86. The following set has no lexicographically maximal element:

{ S[i] : i ≥ 0 }. (3.41)

Operation 3.87 (Lexiographic Minimum of a Set). The lexicographic mini-
mum lexminS of a set S is a subset of S that contains the lexicographically
minimal element of each of the spaces with elements in S. If there is any such
space with no lexicographically minimal element, then the operation is unde-
fined. That is, let DS =: {Si }i. Define

Mi := {x : x ∈ Si ∧ ∀y ∈ Si : Vx 4 Vy }. (3.42)

Then
lexminS =

⋃
i

Mi. (3.43)

In isl, this operation is called isl_union_set_lexmin. In iscc, this op-
eration is written lexmin.

Example 3.88. iscc input ( ):


S := { B[6]; A[2,8,1]; B[5] };
lexmax S;



S := [n] -> { A[i,j] : i,j >= 0 and i + j <= n };
lexmax S;



S := { B[6]; A[2,8,1]; B[5] };
lexmin S;
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S := { B[6]; A[2,8,1]; B[5] };

lexmin S;

iscc invocation:

iscc < lexmin.iscc

iscc output:

{ B[5]; A[2, 8, 1] }

Operation 3.89 (Lexiographic Maximum of a Binary Relation). The lexico-
graphic maximum lexmaxR of a binary relation R is a subset of R that contains
for each first element in the pairs of elements in R and for each of the spaces
of the corresponding second elements, the lexicographically maximal of those
corresponding elements. If there is any such first element and space with no
corresponding lexicographically maximal second element, then the operation is
undefined. That is, let DR =: {Ri }i. Define

Mi := {x→ y : x→ y ∈ Ri∧∀x′ → z ∈ Ri : x = x′ =⇒ Vy < Vz }. (3.44)

Then
lexmaxR =

⋃
i

Mi. (3.45)

In isl, this operation is called isl_union_map_lexmax. In iscc, this op-
eration is written lexmax.

Example 3.90. iscc input ( ):

R := { A[2,8,1] -> B[5]; A[2,8,1] -> B[6]; B[5] -> B[5] };

lexmax R;

iscc invocation:

iscc < map_lexmax.iscc

iscc output:

{ A[2, 8, 1] -> B[6]; B[5] -> B[5] }

Operation 3.91 (Lexiographic Minimum of a Binary Relation). The lexico-
graphic minimum lexminR of a binary relation R is a subset of R that contains
for each first element in the pairs of elements in R and for each of the spaces
of the corresponding second elements, the lexicographically minimal of those
corresponding elements. If there is any such first element and space with no
corresponding lexicographically minimal second element, then the operation is
undefined. That is, let DR =: {Ri }i. Define

Mi := {x→ y : x→ y ∈ Ri∧∀x′ → z ∈ Ri : x = x′ =⇒ Vy < Vz }. (3.46)


R := { A[2,8,1] -> B[5]; A[2,8,1] -> B[6]; B[5] -> B[5] };
lexmax R;
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Then

lexminR =
⋃
i

Mi. (3.47)

In isl, this operation is called isl_union_map_lexmin. In iscc, this op-
eration is written lexmin.

Example 3.92. iscc input ( ):

R := { A[2,8,1] -> B[5]; A[2,8,1] -> B[6]; B[5] -> B[5] };

lexmin R;

iscc invocation:

iscc < map_lexmin.iscc

iscc output:

{ A[2, 8, 1] -> B[5]; B[5] -> B[5] }

3.7 Simplification and Quantifier Elimination

For any given set, there are infinitely many ways of describing it using Pres-
burger formulas. All operations on sets and binary relations described so far
are defined in terms of the actual sets and/or binary relations and not in terms
of the formulas used to describe them. The way a set or binary relation is
described is therefore not all that important. Still, it may be instructive to see
how isl describes sets and binary relations internally since it affects the way
they are printed.

Most importantly, sets and binary relations are represented internally in
disjunctive normal form, meaning that all disjunctions are moved to the out-
ermost positions in the formula, while all conjunctions are moved innermost.
In the end, each formula is of the form

∨
i

∃αi :

∧
j

ti,j(x,αi) = 0 ∧
∧
k

ui,k(x,αi) ≥ 0

 , (3.48)

where ti,j and ui,k are Presburger terms and x represents the set variables.
A second transformation that is sometimes performed by isl on the in-

ternal representation is that of removing all existentially quantified variables.
This process is called quantifier elimination and may introduce additional in-
teger divisions and may also increase the number of disjuncts in the internal
representation.Note 3.9

Operation 3.93 (Quantifier Elimination). Quantifier elimination takes a Pres-
burger formula that may involve existentially quantified variables and rewrites
it into an equivalent formula that does not involve any quantified variables.


R := { A[2,8,1] -> B[5]; A[2,8,1] -> B[6]; B[5] -> B[5] };
lexmin R;
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After quantifier elimination, each formula in a set description is of the form

∨
i

∧
j

ti,j(x) = 0 ∧
∧
k

ui,k(x) ≥ 0

 , (3.49)

where ti,j and ui,k are Presburger terms and x represents the set variables.
When applied to sets or binary relations, quantifier elimination means that
quantifier elimination is applied to the formulas in their internal representa-
tions. In isl, these operations are called isl_union_set_compute_divs and
isl_union_map_compute_divs. There is usually no need for a user to call these
functions explicitly, as isl will apply quantifier elimination when needed. In
particular, some operations are more easily performed if the representations of
the inputs do not involve any existentially quantified variables.

Example 3.94. python input ( ):

import isl

s = isl.union_set("{ A[x] : exists a : x < 3a < 2x }")

print s

s.compute_divs ()

print s

python invocation:

python < elimination.py

python output:

{ A[x] : exists (e0: x < 3e0 < 2x) }

{ A[x] : x >= 2 and 3* floor ((2 + 2x)/3) >= 4 + x }

After the application of several operations, the resulting description of a
set or binary relation may involve more disjuncts than strictly necessary. The
following operation can be used to try and reduce this number. A description
with fewer disjuncts is usually easier to understand and typically also results
in faster computations.

Operation 3.95 (Coalescing). Coalescing takes a formula in disjunctive nor-
mal form and rewrites it using fewer or the same number of disjuncts. Note 3.10

In isl, this operation is called isl_union_set_coalesce for sets and
isl_union_map_coalesce for binary relations. In iscc, this operation is writ-
ten coalesce.

Example 3.96. iscc input ( ):

S := { B[i] : 5 <= i <= 6 or 7 <= i <= 10 };

print S;

S := coalesce S;

print S;


import isl

s = isl.union_set("{ A[x] : exists a : x < 3a < 2x }")
print s
s.compute_divs()
print s



S := { B[i] : 5 <= i <= 6 or 7 <= i <= 10 };
print S;
S := coalesce S;
print S;




64 CHAPTER 3. PRESBURGER SETS AND RELATIONS

iscc invocation:

iscc < coalescing.iscc

iscc output:

{ B[i] : 5 <= i <= 10 and (i <= 6 or i >= 7) }

{ B[i] : 5 <= i <= 10 }

3.8 Sampling and Scanning

When a set is described intensionally, it may not always be obvious to see
whether the set is empty. Operation 3.31 on page 49 can be used to check
emptiness, but in some cases it can be useful to obtain an explicit description
of an element in the set. In such cases, the following operation can be used.

Operation 3.97 (Sampling a Set). Sampling of a non-empty set S determines
a sequence of values for the constant symbols for which S is effectively non-
empty and returns a singleton set S′ that is a subset of S for those values of
the constant symbols. On an empty set, sampling returns the same empty set.

In isl, this operation is called isl_union_set_sample_point. In iscc,
this operation is written sample. The function isl_union_set_sample_point

returns an object of type isl_point, which is a subclass of isl_set. Each
object of type isl_point is either void (corresponding to an empty set) or it
contains a single element for a specific value of the constant symbols.

Example 3.98. iscc input ( ):

sample [n] -> { A[x,y] : 0 < x < y < n };

iscc invocation:

iscc < sample.iscc

iscc output:

[n] -> { A[1, 2] : n = 3 }

Example 3.99. python input ( ):

import isl

s = isl.union_set("[n] -> { A[x,y] : 0 < x < y < n }")

print s.sample_point ()

python invocation:

python < sample.py

python output:


sample [n] -> { A[x,y] : 0 < x < y < n };



import isl

s = isl.union_set("[n] -> { A[x,y] : 0 < x < y < n }")
print s.sample_point()
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[n = 3] -> { A[3, 1] }

An explicit description of all elements in a set can be obtained using the
following operation. This of course assumes that there are a finite number of
them for all values of the constant symbols together.

Operation 3.100 (Scanning a Set). Given a set S that is non-empty for a
finite number of values of the constant symbols and that moreover has a finite
number of elements for each of those values of the constant symbols, scanning
the set returns an explicit description of all these elements for all these values
of the constant symbols.

In isl, this operation is called isl_union_set_foreach_point. In iscc,
the scan operation prints an explicit representation of the entire set. The
function isl_union_set_foreach_point takes a callback that is called for
each value of the constant symbols and each element in the set. Note that this
operation depends on the constant symbols that the set is “aware of”. That is,
the sets { [x] : 0 <= x <= 10 } and [n] -> { [x] : 0 <= x <= 10 } are
equal to each other, but only the first description can be scanned since there
are an infinite number of values for the constant symbol n for which the set in
the second description is non-empty.

Example 3.101. iscc input ( ):

scan { A[x] : exists a : x < 3a < 2x < 20 };

iscc invocation:

iscc < scan.iscc

iscc output:

{ A[9]; A[8]; A[7]; A[6]; A[5]; A[4]; A[2] }

Example 3.102. python input ( ):

import isl

def print_point(point):

print point

s = isl.union_set("{ A[x] : exists a : x < 3a < 2x < 20 }")

s.foreach_point(print_point)

python invocation:

python < scan.py

python output:


scan { A[x] : exists a : x < 3a < 2x < 20 };



import isl

def print_point(point):
    print point

s = isl.union_set("{ A[x] : exists a : x < 3a < 2x < 20 }")
s.foreach_point(print_point)
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{ A[9] }

{ A[6] }

{ A[7] }

{ A[4] }

{ A[8] }

{ A[5] }

{ A[2] }

3.9 Beyond Presburger Formulas

The main reason for only allowing Presburger formulas in set descriptions is
that Presburger formulas are decidable. That is, for any closed Presburger for-
mula (without constant symbols), it is possible to decide whether the formula
is satisfied or not. This means in particular that is possible to check whetherNote 3.11

a Presburger set is empty or not by existentially quantifying the set variables
in the formulas in the set description. In this process, constant symbols can
be treated as variables and existentially quantified as well. A set is then con-
sidered empty if it is empty for every possible value of the constant symbols
as in Operation 3.31 on page 49. As a result of this decidability, all operations
described so far can be performed exactly.

When the language that is used to describe the elements belonging to a set
is extended beyond the Presburger language, this typically leads to the loss of
decidability, meaning that some operations can no longer be performed exactly.
Some commonly considered extensions areNote 3.12

multiplication Allowing multiplication essentially means that the constraints
may involve polynomials. Some techniques for dealing with polynomialsNote 3.13

consider special cases and exploit the fact that the sets only contain
integers. Other techniques consider the problem over the rationals or
even the reals, meaning that a set may be considered to be non-empty
even though it does not contain any integer values.

uninterpreted function symbols Constant symbols, i.e., function symbols
of arity zero, are already part of the Presburger language of Defini-
tion 3.12 on page 43. Some extensions allow function symbols of anyNote 3.14

arity, although typically with some limitations. Just like the special case
of constant symbols, these function symbols are uninterpreted because
they do not have a predefined interpretation.

Notes

3.1. Note that this definition is not minimal, in the sense that some types of
formulas could be defined in terms of others.



3.9. BEYOND PRESBURGER FORMULAS 67

3.2. This set of function and predicate symbols is not minimal. The function
− and the integer constants other than 0 and 1 can be defined in terms of the
other symbols.
3.3. It is more customary to introduce congruence predicates, as is done by,
e.g., Presburger (1929), instead of these integer division functions. Both can
be defined in terms of the others.
3.4. Traditional Presburger formulas do not have such constant symbols. Both
Feautrier (1988b) and Pugh (1991a) use such constant symbols in the context
of integer linear programming. Feautrier (1988b) calls them parameters. Pugh
and Wonnacott (1995) use them in the context of Presburger formulas.
3.5. Note that the term “Presburger formula” is sometimes used in a more re-
strictive meaning. For example, Leservot (1996) does not allow any quantifiers
in his Presburger formulas.
3.6. Some authors consider Presburger arithmetic over the natural numbers
rather than the set of all integers. Note, however, that Presburger (1929) uses
integers.
3.7. The convention of allowing expressions in tuples that depend on variables
in earlier positions is also inherited from the Omega library. An alternative
would be to equate all expressions that appear in a tuple to a fresh sequence of
set variables and to consider all variables that appear in the original expressions
as implicitly existentially quantified. An expression of the form {S[j − 1] →
S[j] } would then be allowed as it would be interpreted as

{ S[v1]→ S[v2] : ∃j : v1 = j − 1 ∧ v1 = j }. (3.50)

3.8. The formula in (3.24) is technically speaking not itself a Presburger for-
mula, but for each value of n it can be expanded into a Presburger formula.
3.9. The need for quantifier elimination is one of the main reasons for in-
troducing integer division symbols in the Presburger language. In isl, quan-
tifier elimination is performed by applying parametric integer programming
(Feautrier 1988b) on the existentially quantified variables, i.e., by finding the
minimal value of those variables in terms of the other variables and constant
symbols. The “new parameters” (Feautrier 1988b) in the result correspond
to the additional integer divisions in the result of the quantifier elimination.
Note that it is more customary to perform quantifier elimination by introducing
congruence predicates. See also Note 3.3.
3.10. Verdoolaege (2015a) describes how coalescing is implemented in isl.
3.11. While it is always possible to determine the truth value of such a Pres-
burger formula, the worst-case complexity is fairly high, see Oppen (1978).
3.12. Another extension is formed by encodings in finite automata. In par-
ticular, an encoding where the automaton accepts the “digits” of an integer in
a base r can also represent the function Vr mapping a non-zero integer z to
the greatest power of r dividing z (Bruyère 1985). See, e.g., Boigelot (1999,
Section 8.1.4) for an overview. Finite automata representations may not be
very practical for polyhedral compilation due to the difficulty of extracting a
constraint representation from the automaton (Latour 2004).
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3.13. Within the context of polyhedral compilation, several techniques have
been considered to handle some forms of polynomial constraints. This note
lists some of them.

Maslov and Pugh (1994) describe how to replace some forms of quadratic
constraints over integers by a disjunction of conjunctions of linear constraints.
Combined with factorization and projection of variables not involved in non-
linear terms, they use this technique to check whether a polynomial constraint
conflicts with other constraints and, if not, to simplify the polynomial con-
straint. This technique specifically exploits the fact that the quadratic con-
straint is defined over integers. The main motivation of the authors is depen-
dence analysis.

Clauss and Tchoupaeva (2004) consider the problem of computing lower
and/or upper bounds of a polynomial f defined over a (rational) paramet-
ric box. The resulting bounds are expressed as the minimum and maximum
of a collection of polynomials in the constant symbols. If, say, these latter
polynomials can be proven to all be negative (possibly through a recursive ap-
plication), then the constraint f ≥ 0 is known to conflict with the constraints
of the parametric box. The parametric box itself has a lower and upper bound
on each dimension, where these lower and upper bounds may involve the con-
stant symbols and the previous dimensions. The bounds may themselves be
polynomials, but the technique requires that the difference between an upper
and a lower bound is never zero, which in turn requires the determination of
the roots of this difference.

Clauss, Fernandez, et al. (2009) describe a related technique for computing
lower and/or upper bounds of a polynomial defined over a convex polytope.
The resulting bounds are again expressed as the minimum and maximum of a
collection of polynomials in the constant symbols.

Größlinger (2009) mainly describes two techniques for handling polynomial
constraints, one where multiplication is only allowed with a single symbolic
constant and one where general multiplication is allowed. For the first case,
the author presents a method for solving an equality constraint exactly, which
is then used for dependence analysis. In the second case, the author resorts
to cylindrical algebraic decomposition techniques (Arnon et al. 1984), solving
over the reals.

Feautrier (2015) explores how to show that a (template) polynomial is non-
negative over a set bounded by polynomial inequalities in the reals, by writing
the template polynomial as a product of a fixed number M of polynomials from
the inequalities. If the linear inequalities among the polynomial inequalities
define a polytope, then this process is guaranteed to find a solution for some M .
The author presents applications in dependence analysis and the computation
of polynomial schedules.
3.14. There is some support in the Omega library for uninterpreted function
symbols, but this support is fairly limited. In particular, the arguments of
the uninterpreted function symbols are required to form a prefix of the set
variables. This means that any given uninterpreted function symbol can only
appear with a single set of arguments within a given set description, allowing
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each uninterpreted function symbol (together with its arguments) to be handled
in the same way as a constant symbol. Unfortunately, this restriction is so
severe, that it cannot be maintained across all operations on sets and relations.
Instead, any constraint containing an uninterpreted function symbol that would
no longer satisfy the requirements is replaced by an “UNKNOWN” constraint.

The Sparse Polyhedral Framework of Strout et al. (2012) follows a com-
pletely different approach. Uninterpreted function symbols are allowed to have
arbitrary arguments in this framework, but very few operations are supported
on sets and relations. Essentially, existential quantification is not allowed and
only those operations are supported that can be implemented in a way that
avoids existential quantification.

An earlier version of the Sparse Polyhedral Framework, described by LaMielle
and Strout (2010), does allow existential quantification and describes tech-
niques for exploiting information about the uninterpreted function symbols,
e.g., their bijectivity, to eliminate existentially quantified variables. After ap-
plication of the simplification techniques, no existentially quantified variables
are allowed in the arguments of the function symbols. Otherwise, the ap-
proach fails. The remaining existentially quantified variables are eliminated
using Fourier-Motkzin elimination (Schrijver 1986), meaning that the elements
in the set are treated as rational values rather than as integers.





Chapter 4

Piecewise Quasi-Affine
Expressions

While a Presburger relation is perfectly capable of representing a function as
a special case, it can sometimes be more convenient to deal with an explicit
representation of a function. The piecewise quasi-affine expressions of this
chapter can represent the same functions as those that can be represented as
a Presburger relation.

4.1 Quasi-Affine Expressions

Definition 4.1 (Quasi-Affine Expression). A quasi-affine expression f is a
function that maps a named integer tuple with a given space S to a rational
value, where the function is specified as a Presburger term in the variables
of the tuple, optionally divided by an integer constant. The space S is called
the domain space of f and is written Sdomf . The domain of a quasi-affine
expression is the set of all elements with space S. As a special case, the quasi-
affine expression may also be a (symbolic) constant expression, in which case
there is no domain space, written Sdomf = ⊥, and the domain is a unit set.

Such an expression is called quasi -affine because it may involve integer Note 4.1

divisions. In isl, a quasi-affine expression is represented by an isl_aff. The
domain space of an isl_aff is the space of the input integer tuple. The range
space of an isl_aff is fixed to the anonymous single-dimensional space. In
case the quasi-affine expression is a constant expression, there is no input tuple
and the space of the isl_aff is the anonymous single-dimensional space.

Notation 4.2 (Quasi-Affine Expression). In isl, a quasi-affine expression is
written as a structured named integer tuple template, followed by -> and the
quasi-affine expression in the variables of the structured named integer tuple
template enclosed in brackets, with the entire expression enclosed in braces.
The structured named integer tuple template and the -> are omitted if the quasi-

71
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affine expression does not have a domain space. If any constant symbols are
involved, then they need to be declared as in Notation 3.22 on page 46.

As in the case of sets and binary relation, the way a quasi-affine expression
is printed may be different from the way it was originally described by the user.

Example 4.3. python input ( ):

import isl

a = isl.aff("{ [x,y] -> [floor ((2*x+4* floor(y/2))/3)] }")

print a

python invocation:

python < affine.py

python output:

{ [x, y] -> [(x + floor((y)/2) + floor((-2x + y)/6))] }

Clearly, pure quasi-affine expressions are not enough to represent any possi-
ble single-valued Presburger relation. Instead, several such expressions need to
be combined in a structured way. In particular, the following type constructors
are applied to the type of quasi-affine expressions to obtain more expressive
types: a tuple constructor to combine several expressions into a tuple; a piece-
wise constructor to combine several expressions defined over disjoint parts of
a space; and a union constructor to combine several expressions defined over
different spaces.

Definition 4.4 (Tuple of Expressions). A tuple of expressions combines zero
or more base expressions of the same type and with the same domain space (or
no domain space) into a multi-dimensional expression that shares this domain
space and that has a prescribed range space. In particular, it is either,

• an identifier n along with d ≥ 0 base expressions ej for 0 ≤ j < d, written
n[e0, e1, . . . , ed−1], or,

• an identifier n along with two tuples of expressions e and f written n[e→
f ].

The domain of a tuple of one or more expressions is the intersection of the
domains of the expressions. The domain of a tuple of zero expressions is un-
defined.

In particular, a tuple of quasi-affine expressions is the result of constructing
a tuple expression from quasi-affine expressions.

Definition 4.5 (Tuple of Quasi-Affine Expressions). A tuple of quasi-affine
expressions is the result of applying Definition 4.4 to quasi-affine expressions.


import isl

a = isl.aff("{ [x,y] -> [floor((2*x+4*floor(y/2))/3)] }")
print a
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In isl, a tuple of quasi-affine expressions is represented by an isl_multi_aff.

Notation 4.6 (Tuple of Quasi-Affine Expressions). In isl, a tuple of quasi-
affine expressions is written in the same way as a quasi-affine expression in No-
tation 4.2 on page 71, except that the quasi-affine expression enclosed in brack-
ets is generalized to a structured named integer tuple template with the vari-
ables replaced by quasi-affine expressions in the variable of the input structured
named integer tuple template.

Example 4.7. Here is an example of a tuple of quasi-affine expressions:

{ S[i, j]→ A x[A[i+ 1, j − 1]→ x[]] }. (4.1)

Definition 4.8 (Space of a Tuple of Expressions). The space Se of a tuple of
expressions e is

• n/d, if e is of the form n[e0, e1, . . . , ed−1], with n an identifier and d a
non-negative integer, or,

• (n,S(f),S(g)), if e is of the form n[f → g], with n an identifier and f
and g tuples of expressions.

In isl the space of a tuple of quasi-affine expressions is called the range
space of its isl_multi_aff representation.

Definition 4.9 (Expression Vector). The expression vector Ee of a tuple of
expressions e is the vector

• (e0, e1, . . . , ed−1), if e is of the form n[e0, e1, . . . , ed−1], with n an identi-
fier and d a non-negative integer, or,

• E(f)‖E(g), with ‖ the concatenation of two vectors, if e is of the form
n[f → g], with n an identifier and f and g tuples of expressions.

Definition 4.10 (Piecewise Expression). A piecewise expression combines
n ≥ 0 pairs of fixed-space sets Si and base expressions Ei into a single ex-
pression. The spaces of the Si and the domain spaces of the Ei all need to
be the same. Similarly, the range spaces of the Ei also need to be the same.
Furthermore, the Si need to be pairwise disjoint. The domain and range spaces
of the piecewise expression are the same as those of the Ei. The domain of the
piecewise expression is the union of the Si. The value of the piecewise expres-
sion at an integer tuple x is Ei(x) if x ∈ Si for some i. Otherwise, the value
is undefined.

This constructor can again be applied to produce new types.

Definition 4.11 (Piecewise Quasi-Affine Expression). A piecewise quasi-affine
expression is the result of applying Definition 4.10 to quasi-affine expressions.

In isl, a piecewise quasi-affine expression is represented by an isl_pw_aff.



74 CHAPTER 4. PIECEWISE QUASI-AFFINE EXPRESSIONS

Notation 4.12 (Piecewise Quasi-Affine Expression). In isl, a piecewise quasi-
affine expression is written as a sequence of conditional quasi-affine expressions
separated by a semicolon and enclosed in braces. Each conditional quasi-affine
expression consists of the notation from Notation 4.2 on page 71 (without the
braces) for the quasi-affine expression Ei, followed by a colon and the con-
straints of Si.

Example 4.13. Here is an example of a piecewise quasi-affine expression:

{ [x]→ [x+ 1] : 0 ≤ x < n− 1; [x]→ [0] : x = n− 1 }. (4.2)

Definition 4.14 (Piecewise Tuple of Quasi-Affine Expressions). A piecewise
tuple of quasi-affine expression is the result of applying Definition 4.10 on the
preceding page to tuples of quasi-affine expressions.

In isl, a piecewise tuple of quasi-affine expressions is represented by an
isl_pw_multi_aff.

Alternative 4.15 (Quasts). Quasi-affine selection trees,Note 4.2 also known as
quasts, form an alternative representation of piecewise tuples of quasi-
affine expressions. A quasi-affine section tree is a tree with as leaves
either a tuple of quasi-affine expressions or ⊥ and as internal nodes a
quasi-affine expression. Each internal node has two children, one that
should be followed if the quasi-affine expression in the node is non-negative
and one that should be followed if the expression is negative. The value
of the quasi-affine section tree is the value of the tuple of quasi-affine
expressions that is reached on evaluating the internal nodes on the input.
If this process ends up in ⊥, then the value is undefined.

Notation 4.16 (Piecewise Tuple of Quasi-Affine Expressions). In isl, a piece-
wise tuple of quasi-affine expressions is written as a sequence of conditional
tuples of quasi-affine expressions separated by a semicolon and enclosed in
braces. Each conditional tuple of quasi-affine expressions consists of the nota-
tion from Notation 4.6 on the previous page (without the braces) for the tuple
of quasi-affine expressions Ei, followed by a colon and the constraints of Si.

Each piecewise expression has a given domain and range space. The follow-
ing constructor allows them to be combined over multiple spaces.

Definition 4.17 (Multi-Space Expression). A multi-space expression com-
bines piecewise expressions with different domain and/or range spaces, but with
pair-wise disjoint domains into a single expression. A multi-space expression
does not have a specific domain or range space, even if all constituent piecewise
expressions happen to have the same domain or range space. The domain of a
multi-space expression is the union of the domains of the combined piecewise
expressions. The value of a multi-space expression at an integer tuple x is the
value of the piecewise expression at x that contains x in its domain, if any.
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Definition 4.18 (Multi-Space Piecewise Quasi-Affine Expression). A multi-
space piecewise quasi-affine expression is the result of applying Definition 4.17
on the facing page to piecewise quasi-affine expressions.

In isl, a multi-space piecewise quasi-affine expression is represented by an
isl_union_pw_aff.

Notation 4.19 (Multi-Space Piecewise Quasi-Affine Expression). A multi-
space piecewise quasi-affine expression is written in the same way as a piecewise
quasi-affine expression (see Notation 4.12 on the preceding page). The only
difference is that the domains may have different spaces.

Definition 4.20 (Multi-Space Piecewise Tuple of Quasi-Affine Expressions).
A multi-space piecewise tuple of quasi-affine expressions is the result of ap-
plying Definition 4.17 on the facing page to piecewise tuples of quasi-affine
expressions.

In isl, a multi-space piecewise tuple of quasi-affine expressions is repre-
sented by an isl_union_pw_multi_aff.

Notation 4.21 (Multi-Space Piecewise Tuple of Quasi-Affine Expressions). A
multi-space piecewise tuple of quasi-affine expressions is written in the same
way as a piecewise tuple of quasi-affine expressions (see Notation 4.16 on the
preceding page). The only difference is that the domains and the tuples may
have different spaces.

Tuples can also be constructed from piecewise expressions or multi-space
expressions.

Definition 4.22 (Tuple of Piecewise Quasi-Affine Expressions). A tuple of
piecewise quasi-affine expressions is the result of applying Definition 4.4 on
page 72 to piecewise quasi-affine expressions.

In isl, a tuple of piecewise quasi-affine expressions is represented by an
isl_multi_pw_aff.

Notation 4.23 (Tuple of Piecewise Quasi-Affine Expressions). In isl, a tuple
of piecewise quasi-affine expressions is written in the same way as a tuple of
quasi-affine expressions in Notation 4.6 on page 73, except that each quasi-
affine expression may be replaced by a semicolon separated sequence of a quasi-
affine expression, a colon and the constraints of the corresponding set. Each
such sequence needs to be enclosed in parentheses to prevent the comma that is
used to separate the sequences from being considered as separating expressions
inside the constraints.

Although piecewise tuples of quasi-affine expressions and tuples of piecewise
quasi-affine expressions are very similar, they are handled in slightly different
ways since the first is a piecewise expression, while the second is a tuple. There
is also a difference in what these two types of expressions can represent. In
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particular, in a tuple of piecewise quasi-affine expressions, each element is a
piecewise expression that may be undefined in different parts of the domain
space. In a piecewise tuple of quasi-affine expressions, on the other hand, the
entire tuple is either defined or undefined at any particular point in the domain
space.

Example 4.24. The following tuple of piecewise quasi-affine expressions can-
not be represented as a piecewise tuple of quasi-affine expressions:

{ [i]→ [(i : i ≥ 0), (i− 1 : i ≥ 1)] }. (4.3)

In particular, the first piecewise quasi-affine expression has domain { [i] : i ≥
0 }, while the second has domain { [i] : i ≥ 1 }.

Example 4.25. The following transcript converts a piecewise tuple of quasi-
affine expressions to a tuple of piecewise quasi-affine expressions, which can
always be performed without loss of information.
python input ( ):

import isl

a = isl.pw_multi_aff("{ [i] -> [i, i - 1] : i - 1 >= 0 }")

print a

a = isl.multi_pw_aff(a)

print a

python invocation:

python < multi_pw_aff.py

python output:

{ [i] -> [(i), (-1 + i)] : i > 0 }

{ [i] -> [((i) : i > 0), ((-1 + i) : i > 0)] }

Definition 4.26 (Tuple of Multi-Space Piecewise Quasi-Affine Expressions).
A tuple of multi-space piecewise quasi-affine expressions is the result of apply-
ing Definition 4.4 on page 72 to multi-space piecewise quasi-affine expressions.
Since a multi-space piecewise quasi-affine expression does not have a domain
space, neither does a tuple of multi-space piecewise quasi-affine expressions.

In isl, a tuple of multi-space piecewise quasi-affine expressions is repre-
sented by an isl_multi_union_pw_aff.

Notation 4.27 (Tuple of Multi-Space Piecewise Quasi-Affine Expressions).
In isl, a tuple of multi-space piecewise quasi-affine expressions is written as
a structured named integer tuple template with the variables replaced by multi-
space piecewise quasi-affine expressions in the notation of Notation 4.21 on
the previous page, except that the constant symbols are declared outside of the
structured named integer tuple template.


import isl

a = isl.pw_multi_aff("{ [i] -> [i, i - 1] : i - 1 >= 0 }")
print a
a = isl.multi_pw_aff(a)
print a
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Example 4.28. The following transcript shows an example of a tuple of multi-
space piecewise quasi-affine expressions.
python input ( ):

import isl

a = isl.multi_union_pw_aff(

"[n] -> A[{ S1[] -> [n]; S2[i,j] -> [i] }, "

"{ S1[] -> [0]; S2[i,j] -> [j] }]")

print a

python invocation:

python < multi_union_pw_aff.py

python output:

[n] -> A[{ S2[i, j] -> [(i)]; S1[] -> [(n)] }, { S2[i, j] ->

↪→ [(j)]; S1[] -> [(0)] }]

4.2 Creation

Some operations on binary relations are also available in a form that produces
a multi-space piecewise tuple of quasi-affine expressions. In particular, the
domain projection operation of Operation 2.100 on page 38 is also available in
isl as isl_union_map_domain_map_union_pw_multi_aff.

4.3 Operations

Every binary operation takes either two expressions with a domain space as
input or two expressions with no domain space. Some binary operations have
additional constraints.

4.3.1 Sum

The sum of two functions is defined in the obvious way.

Definition 4.29 (Sum of Quasi-Affine Expressions). The sum f + g of two
quasi-affine expressions f and g with the same domain space is a function with
the same domain space and as value the sum of the values of f and g.

In isl, this operation is available as isl_aff_add.

Definition 4.30 (Sum of Tuples of Expressions). The sum f +g of two tuples
of expressions with the same domain and range spaces is a tuple of expressions
with the same domain and range spaces and as expressions the pair-wise sums
of the expressions of f and g.

In isl, this operation is available as


import isl

a = isl.multi_union_pw_aff(
    "[n] -> A[{ S1[] -> [n]; S2[i,j] -> [i] }, "
    "{ S1[] -> [0]; S2[i,j] -> [j] }]")
print a
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• isl_multi_aff_add,

• isl_multi_pw_aff_add, and

• isl_multi_union_pw_aff_add.

Definition 4.31 (Sum of Piecewise Expressions). The sum f +g of two piece-
wise expressions with the same domain and range spaces is a tuple of expres-
sions with the same domain and range spaces that evaluates to the sum of f
and g on their shared domain. In particular, let f be composed of m sets Ui

with base expressions Fi and f of n sets Vj with base expressions Gj. Define

Sij = Ui ∩ Vj
Eij = Fi +Gj ,

(4.4)

for 1 ≤ i ≤ m and 1 ≤ j ≤ n. The sum f + g consists of the non-empty sets
Sij along with the corresponding base expressions Eij.

In isl, this operation is available as

• isl_pw_aff_add and

• isl_pw_multi_aff_add.

Definition 4.32 (Sum of Multi-Space Expressions). The sum f + g of two
multi-space expressions is a multi-space expression that combines the sums of
the pairs of constituent expressions of f and g that have the same domain
and range spaces. If f and g have constituent expressions that have the same
domain space, but a different range space, then the domains of these two con-
stituent expressions are required to be disjoint.

In isl, this operation is available as

• isl_union_pw_aff_add and

• isl_union_pw_multi_aff_add.

Example 4.33. python input ( ):

import isl

a1 = isl.union_pw_multi_aff(

"{ A[i] -> B[i] : i > 0 }")

a2 = isl.union_pw_multi_aff(

"{ A[i] -> B[3] : i >= 0; A[i] -> C[2] : i < 0 }")

print a1.add(a2)

python invocation:

python < aff_sum.py

python output:

{ A[i] -> B[(3 + i)] : i > 0 }


import isl

a1 = isl.union_pw_multi_aff(
 "{ A[i] -> B[i] : i > 0 }")
a2 = isl.union_pw_multi_aff(
 "{ A[i] -> B[3] : i >= 0; A[i] -> C[2] : i < 0 }")
print a1.add(a2)
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4.3.2 Union

The union of two expressions with disjoint domains combines them into a single
expression defined over the union of the domains.

Definition 4.34 (Union of Piecewise Expressions). The union of two piece-
wise expressions f and g with the same domain and range spaces but disjoint
domains is a piecewise expression that evaluates to f on the domain of f and
to g on the domain of g.

Definition 4.35 (Union of Multi-Space Expressions). The union of two multi-
space expressions f and g with disjoint domains is a multi-space expression that
evaluates to f on the domain of f and to g on the domain of g.

The union operation is not directly available in isl. Instead, isl provides
an operation that computes the sum of the intersection of the domains of the
two arguments and the union on the symmetric difference of those domains.
The two arguments then also need to agree on the range space on the inter-
section of their domains. If the arguments are known to be disjoint, then this
operation can be used as a union operation. It comes in the following flavors:

• isl_pw_aff_union_add,

• isl_pw_multi_aff_union_add,

• isl_union_pw_aff_union_add,

• isl_union_pw_multi_aff_union_add, and

• isl_multi_union_pw_aff_union_add.

Example 4.36. python input ( ):

import isl

a1 = isl.union_pw_multi_aff(

"{ A[i] -> B[i] : i > 0 }")

a2 = isl.union_pw_multi_aff(

"{ A[i] -> B[3] : i >= 0; A[i] -> C[2] : i < 0 }")

print a1.union_add(a2)

python invocation:

python < aff_union_sum.py

python output:

{ A[i] -> C[(2)] : i < 0; A[i] -> B[(3 + i)] : i > 0; A[i]

↪→ -> B[(3)] : i = 0 }


import isl

a1 = isl.union_pw_multi_aff(
 "{ A[i] -> B[i] : i > 0 }")
a2 = isl.union_pw_multi_aff(
 "{ A[i] -> B[3] : i >= 0; A[i] -> C[2] : i < 0 }")
print a1.union_add(a2)
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4.3.3 Product

The product of two functions (or constant expressions) is defined in an anal-
ogous way to the product of two set (see Operation 2.77 on page 31) or two
binary relations (see Operation 2.79 on page 31).

Operation 4.37 (Product of Tuple Expressions). The product f × g of two
tuple expressions f and g is the tuple expression obtained by forming the
wrapped pair of the tuple expressions defined over the wrapped pair of domain
spaces (or no domain space if f and g have no domain space). That is, let
Ef =: (f1, . . . , fm) and Eg =: (g1, . . . , gn). Then

S(f × g) = [Sf → Sg]

Sdom(f × g) = [Sdomf → Sdomg]

E(f × g) = (f ′1, . . . , f
′
m, g

′
1, . . . , g

′
n)

(4.5)

with
f ′i : Sdom(f × g)→ Q :

[a→ b] 7→ fi(a) if a ∈ dom fi
(4.6)

for 1 ≤ i ≤ m and

g′j : Sdom(f × g)→ Q :

[a→ b] 7→ gj(b) if b ∈ dom gj
(4.7)

for 1 ≤ j ≤ n. If Sdomf = ⊥ (and therefore also Sdomg = ⊥), then Sdom(f ×
g) = ⊥ too and E(f × g) = Ef‖Eg, with ‖ the concatenation of two vectors.

In isl, this operation is available as isl_multi_aff_product and also as
isl_multi_pw_aff_product. The operation is also available on types derived
from tuple expressions, in particular as isl_pw_multi_aff_product.

Example 4.38. python input ( ):

import isl

a1 = isl.multi_aff("{ A[i,j] -> R[i + j] }")

a2 = isl.multi_aff("{ B[x] -> R[2x] }")

print a1.product(a2)

python invocation:

python < aff_product.py

python output:

{ [A[i, j] -> B[x]] -> [R[(i + j)] -> R[(2x)]] }


import isl

a1 = isl.multi_aff("{ A[i,j] -> R[i + j] }")
a2 = isl.multi_aff("{ B[x] -> R[2x] }")
print a1.product(a2)
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A range product of two functions is also defined in an analogous way to
that of binary relations (see Operation 2.86 on page 34). No domain product
can be defined on functions since a function defined in terms of one domain
cannot be coerced into being defined on another domain.

Operation 4.39 (Range Product of Tuple Expressions). The range product
f n g of two tuple expressions f and g defined over the same space (or no
domain space) is the tuple expression obtained by forming the wrapped pair of
the tuple expressions. The range product is defined over the same space as f
and g. That is,

S(f n g) = [Sf → Sg]

Sdom(f n g) = Sdomf = Sdomg
E(f n g) = Ef‖Eg,

(4.8)

with ‖ the concatenation of two vectors.

Note that for tuples of expressions with no domain space, the product and
the range product are the same. In isl, this operation is available as

• isl_multi_aff_range_product,

• isl_multi_pw_aff_range_product, and

• isl_multi_union_pw_aff_range_product.

The operation is also available on types derived from tuple expressions, in
particular as isl_pw_multi_aff_range_product.

Example 4.40. python input ( ):

import isl

a1 = isl.multi_union_pw_aff(

"R[{ A[i,j] -> [i + j]; B[x] -> [2x] }]")

a2 = isl.multi_union_pw_aff(

"S[{ A[i,j] -> [2]; B[x] -> [0]; C[] -> [1] }]")

print a1.range_product(a2)

python invocation:

python < aff_range_product.py

python output:

[R[{ B[x] -> [(2x)]; A[i, j] -> [(i + j)] }] -> S[{ B[x] ->

↪→ [(0)]; A[i, j] -> [(2)]; C[] -> [(1)] }]]

In some cases, it may be more convenient to simply concatenate two tuples
of expressions, without keeping track of the original spaces of these tuples. To
this end, a flattening of a space is first defined as follows.


import isl

a1 = isl.multi_union_pw_aff(
    "R[{ A[i,j] -> [i + j]; B[x] -> [2x] }]")
a2 = isl.multi_union_pw_aff(
    "S[{ A[i,j] -> [2]; B[x] -> [0]; C[] -> [1] }]")
print a1.range_product(a2)
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Definition 4.41 (Flattening of a Space). Given a space S, its flattening FS
is the space

• n/d, if S = n/d or,

• n/d if S = (n, S1, S2), FS1 = n1/d1, FS2 = n2/d2 and d = d1 + d2.

Operation 4.42 (Flat Range Product of Tuple Expressions). The flat range
product h of two tuple expressions f and g defined over the same space (or
no domain space) is the tuple expression obtained by forming the flattened
concatenation of the tuple expressions. The flat range product is defined over
the same space as f and g. That is,

Sh = F([Sf → Sg])

Sdomh = Sdomf = Sdomg
Eh = Ef‖Eg,

(4.9)

with ‖ the concatenation of two vectors.

In isl, this operation is available as

• isl_multi_aff_flat_range_product,

• isl_multi_pw_aff_flat_range_product, and

• isl_multi_union_pw_aff_flat_range_product.

The operation is also available on types derived from tuple expressions, in
particular as

• isl_pw_multi_aff_flat_range_product, and

• isl_union_pw_multi_aff_flat_range_product.

Example 4.43. python input ( ):

import isl

a1 = isl.multi_union_pw_aff(

"R[{ A[i,j] -> [i + j]; B[x] -> [2x] }]")

a2 = isl.multi_union_pw_aff(

"S[{ A[i,j] -> [2]; B[x] -> [0]; C[] -> [1] }]")

print a1.flat_range_product(a2)

python invocation:

python < aff_flat_range_product.py

python output:

[{ B[x] -> [(2x)]; A[i, j] -> [(i + j)] }, { B[x] -> [(0)];

↪→ A[i, j] -> [(2)]; C[] -> [(1)] }]


import isl

a1 = isl.multi_union_pw_aff(
    "R[{ A[i,j] -> [i + j]; B[x] -> [2x] }]")
a2 = isl.multi_union_pw_aff(
    "S[{ A[i,j] -> [2]; B[x] -> [0]; C[] -> [1] }]")
print a1.flat_range_product(a2)
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4.3.4 Pullback

The precomposition of two functions f and g is called the pullback of the
function f by the function g. In particular, the domain of f is pulled back to
the domain of g. Essentially, this means that the function g is plugged into f .

Operation 4.44 (Pullback). The pullback f◦g of the function f by the function
g is the function that maps domain elements of g to the result of applying f to
the result of g. If f has a domain space, then it needs to be equal to the range
space of g. That is,

f ◦ g : dom g → Q :

a 7→ f(g(a)) if g(a) ∈ dom f.
(4.10)

If f is a tuple expression, then the pullback of f by g is the tuple in the same
space as f with as tuple expressions the pullback of the tuple expressions of f
by g.

In isl, this operation is available as

• isl_aff_pullback_multi_aff

• isl_pw_aff_pullback_multi_aff

• isl_pw_aff_pullback_pw_multi_aff

• isl_pw_aff_pullback_multi_pw_aff

• isl_multi_aff_pullback_multi_aff

• isl_pw_multi_aff_pullback_multi_aff

• isl_pw_multi_aff_pullback_pw_multi_aff

• isl_union_pw_multi_aff_pullback_union_pw_multi_aff

• isl_multi_pw_aff_pullback_multi_aff

• isl_multi_pw_aff_pullback_pw_multi_aff

• isl_multi_pw_aff_pullback_multi_pw_aff

• isl_union_pw_aff_pullback_union_pw_multi_aff

• isl_multi_union_pw_aff_pullback_union_pw_multi_aff

The final parts of these functions names refer to the type of the final argument.
In the python interface, this part of the function name is dropped. The above
functions are therefore all called pullback.

Example 4.45. python input ( ):


import isl

a1 = isl.multi_union_pw_aff(
    "R[{ A[i,j] -> [i + j]; B[x] -> [2x] }]")
a2 = isl.union_pw_multi_aff(
    "{ C[x] -> A[x,x]; D[x] -> E[2x] }")
print a1.pullback(a2)
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import isl

a1 = isl.multi_union_pw_aff(

"R[{ A[i,j] -> [i + j]; B[x] -> [2x] }]")

a2 = isl.union_pw_multi_aff(

"{ C[x] -> A[x,x]; D[x] -> E[2x] }")

print a1.pullback(a2)

python invocation:

python < pullback.py

python output:

R[{ C[x] -> [(2x)] }]

4.4 Conversions

A function f of any of the types derived from a quasi-affine expressions can be
converted to a Presburger relation as long as the domain of a function is not a
unit set. In particular, the resulting relation is of the form

{a→ b : a ∈ dom f ∧ b = f(a) }. (4.11)

This conversion is available as isl_union_map_from_union_pw_multi_aff and
isl_union_map_from_multi_union_pw_aff in isl. Recall that the domain of
a tuple of multi-space piecewise quasi-affine expressions is the intersection of
the domains of the constituent expressions, so some information may be lost
in the conversion. This means in particular that if these multi-space piecewise
quasi-affine expressions have disjoint domains, that then the resulting Pres-
burger relation is empty. In the python interface, these functions are called
convert_from because from is a Python keyword.

Example 4.46. Here is an example of a conversion where no information is
lost.
python input ( ):

import isl

a = isl.multi_union_pw_aff(

"[n] -> A[{ S1[] -> [n]; S2[i,j] -> [i] }, "

"{ S1[] -> [0]; S2[i,j] -> [j] }]")

r = isl.union_map.convert_from(a)

print r

python invocation:

python < union_map_from_multi_union_pw_aff.py

python output:


import isl

a = isl.multi_union_pw_aff(
    "[n] -> A[{ S1[] -> [n]; S2[i,j] -> [i] }, "
    "{ S1[] -> [0]; S2[i,j] -> [j] }]")
r = isl.union_map.convert_from(a)
print r
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[n] -> { S1[] -> A[n, 0]; S2[i, j] -> A[i, j] }

Example 4.47. Here is an example of a conversion where some information
is lost.
python input ( ):

import isl

a = isl.multi_union_pw_aff(

"A[{ S[i] -> [i] : i >= 0; S[i] -> [-i] : i < 0 }, "

"{ S[i] -> [i - 1] : i >= 1 }]")

r = isl.union_map.convert_from(a)

print r

python invocation:

python < union_map_from_multi_union_pw_aff2.py

python output:

{ S[i] -> A[i, -1 + i] : i > 0 }

Notes

4.1. The “quasi-affine” terminology appears to have been coined by Quin-
ton (1984), although it originally only allowed for an outer integer division.
Feautrier (1991) allows integer divisions throughout the expression.
4.2. Quasi-affine selection trees were introduced by Feautrier (1991). Opera-
tions on such trees are described by Alias et al. (2012) and Guda (2013).


import isl

a = isl.multi_union_pw_aff(
    "A[{ S[i] -> [i] : i >= 0; S[i] -> [-i] : i < 0 }, "
    "{ S[i] -> [i - 1] : i >= 1 }]")
r = isl.union_map.convert_from(a)
print r






Chapter 5

Polyhedral Model

5.1 Main Concepts

A polyhedral model is an abstraction of a piece of code that is used in various
contexts and that therefore exists in various incarnations. There are some
concepts that they all have in common, even though they may be called and
represented differently.

Instance Set The instance set is the set of all “dynamic execution instances”,
i.e., the set of operations that are performed by the abstracted piece of
code.

Dependence Relation The dependence relation is a binary relation between
elements of the instance set where one of the instances depends on the
other in some way. Several types of dependence relations can be con-
sidered and the exact nature of the dependence of one instance on the
other depends on the type of the dependence relation. Typically, though,
the dependence relation expresses that one instance needs to be executed
before the other.

Schedule A schedule S defines a strict partial order <S , i.e., an irreflexive
and transitive relation, on the elements of the instance set that specifies
the order in which they are or should be executed.

While some polyhedral compilation techniques only use a polyhedral model
for analysis purposes, others also use it to transform the program fragment un-
der consideration. These transformations are expressed through modifications
of the schedule. The resulting schedules need to satisfy the following property.

Definition 5.1 (Valid Schedule). Let D be a dependence relation that expresses
that the first instance needs to be executed before the second and let S be a
schedule. The schedule S is said to be a valid schedule with respect to D, or,
equivalently, to respect the dependences in D, if

D ⊆ (<S). (5.1)

87
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In order to accommodate dependences of instances on themselves, this condition
may also be relaxed to

(D \ 1domD) ⊆ (<S). (5.2)

Another commonly used abstraction is that of the access relation. This
relation maps elements from the instance set to elements of some data set and
expresses which data elements are or may be accessed by a given element of
the instance set.

The parse_file operator of iscc can be used to extract parts of a poly-
hedral model from a C source file. In particular, this operator extracts a
polyhedral model from the first suitable region in the source file. The operator
takes a string containing the name of the source file as input and return a list
containing the instance set (see Section 5.2 Instance Set), the must-write ac-
cess relation, the may-write access relation, the may-read access relation (see
Section 5.3 Access Relations), and a representation of the original schedule (see
Section 5.6 Schedule).

The pet_scop_extract_from_C_source function of pet can be used to
extract a polyhedral model from a specific function in a C source file. In
particular, a polyhedral model in the form of a pet_scop is extracted from the
first suitable region in that function. This function is exported by the python

interface to pet. The function pet_scop_get_schedule can be used to extract
the schedule from the pet_scop. The function pet_scop_get_instance_set

can be used to extract the instance set from the pet_scop. The following
functions can be used to extract access relations.

• pet_scop_get_may_reads,

• pet_scop_get_may_writes, and

• pet_scop_get_must_writes.

5.2 Instance Set

5.2.1 Definition and Representation

Definition 5.2 (Instance Set). The instance set is the set of all dynamic
execution instances.

The dynamic execution instances usually come in groups that correspond to
pieces of code in the program that is being represented. The different instances
in a group then correspond to the distinct executions of the corresponding piece
of code at run-time. If the program is analyzed and/or transformed in source
form, then these groups are typically the statements inside the analyzed code
fragment, but a statement may also be decomposed into several groups or,
conversely, a group may also contain several statements. If the program is
analyzed in compiled form, then the groups typically correspond to the basic
blocks in the internal representation of the compiler. In order to simplifyNote 5.1
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S: prod = 0;

for (int i = 0; i < 100; ++i)

T: prod += A[i] * B[i];

Listing 5.1: Inner product of two vectors of length 100

S: prod = 0;

for (int i = 0; i < n; ++i)

T: prod += A[i] * B[i];

Listing 5.2: Inner product of two vectors of length n

the discussion, such a group, whether it represents a program statement, a
basic block or something else entirely, will be called a polyhedral statement.
Polyhedral statements are discussed in more detail in Section 5.8 Polyhedral
Statements.

An instance set can be represented as a Presburger set by encoding the
polyhedral statement in the name of each element and the dynamic instance of
the polyhedral statement in its integer values. In particular, if the polyhedral
statement is enclosed in n loops, then the dynamic instance is typically (but
not necessarily) represented by n integer values, each representing the iteration
count of one of the enclosing loops. It should be noted that these sequences
of integers in the elements of the instance set only serve to identify the dis-
tinct dynamic instances and that they do not imply any particular order of
execution. Also note that if the polyhedral model is only used to analyze a
program, for example to determine properties of loops in the program, then
the mapping between the statement instances and the loop iterations should
either be implicit or it should be kept track of separately.

Example 5.3. Consider the program fragment in Listing 5.1 for computing
the inner product of two vectors A and B of length 100. There are two program
statements in this fragment, one with label S and one with label T. Take these
two program statements as the polyhedral statements. During the execution of
this fragment, the statement with label S is executed once, while the statement
with label T is executed 100 times. Each of these 100 executions can be rep-
resented by the value of the loop iterator i during the execution. That is, the
instances of this program fragment can be represented by the instance set

{ S[]; T[i] : 0 ≤ i < 100 }. (5.3)

A program variable that is not modified inside the program fragment under
analysis can be represented by a constant symbol since it has a fixed (but
unknown) value. Such variables are also called parameters.

Example 5.4. Consider the program fragment in Listing 5.2 for computing
the inner product of two vectors A and B of length n. The only difference with
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the program fragment in Listing 5.1 on the preceding page is that the value 100
in the loop condition has been replaced by the variable n. Since the value of n
does not change during the execution of this program fragment, its instances
can be represented by the instance set

{ S[]; T[i] : 0 ≤ i < n }, (5.4)

where n is a constant symbol.

Alternative 5.5 (Per-Statement Instance Set). Many approaches do not
operate on a single instance set containing all instances of all polyhe-
dral statements, but rather maintain separate instance sets per polyhedral
statement.

Alternative 5.6 (Instance Set Name). Various different names for (typ-
ically per-statement) instance sets are in common use, including iteration
domain,Note 5.2 index set and iteration space. The elements of these sets are of-
ten called iteration vectors.

Alternative 5.7 (Instance Set Representation). Many approaches use
more restrictive representations for per-statement instance sets. In par-
ticular, they typically do not allow any integer divisions or quantifiers.
Some do not allow any disjunctions (including negations of conjunctions)
either. In this latter case, the instances of a statement are represented by
the integer points in a polyhedron.

Alternative 5.8 (Ordered Instance Set). Some approaches consider the
elements of the instance set(s) to be ordered, typically lexicographically.
Reordering transformations are then applied by modifying the elements of
the instance set(s).

5.2.2 Input Requirements and Approximations

In order to be able to represent the dynamic execution instances of a program
fragment exactly, this fragment needs to satisfy certain conditions. Most impor-
tantly, the fragment needs to have static control-flow. That is, the control-flow
needs to be known at compile time, possibly depending on the values of the
constant symbols. This means that the control-flow should not depend on any
input data in any other way and that moreover the compiler is able to figure
out the control-flow. This typically means, for example, that the code cannot
contain any gotos. The static control-flow requirement allows the compiler
to determine at compile-time exactly which dynamic execution instances will
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I: sol = Initial_Solution(problem );

E1: error = Compute_Error(problem , sol);

while (error >= threshold) {

U: sol = Update_Solution(problem , sol);

E2: error = Compute_Error(problem , sol);

}

Listing 5.3: Pseudo code for incremental solver

for (i = 1; i <= n; i += i)

S: A[i] = i;

Listing 5.4: Loop with non-constant increment

be executed at run-time. In order to be able to encode these instances in
a Presburger formula, further restrictions need to be imposed. Typically, all
conditions in the code are required to be (quasi-)affine expressions in the outer
loop iterators and the parameters, the initial value of a loop iterator is required
to be a (quasi-)affine expression in the outer loop iterators and the parameters,
and the loop increment is required to be an integer constant.

Example 5.9. Consider the pseudo code in Listing 5.3 for some incremental
solver. Since the while-loop does not have an explicit loop iterator, it cannot be
used to represent the instances of the two statements inside the loop. Moreover,
it is impossible in general to describe the number of iterations of the loop (and
hence the number of instances of the statements) as a quasi-affine expression.
If the program is guaranteed to terminate, then is still possible to represent its
instance set as

{ I[]; E1[]; U[i] : 0 ≤ i < N; E2[i] : 0 ≤ i < N }, (5.5)

with N a constant symbol that represent the unknown number of iteration of
the loop. However, such an encoding is only possible for an outer while-loop
since the number of iterations of a while-loop that is embedded in another loop
will typically depend on the iteration of that outer loop and can therefore not
be represented by a single constant symbol.

Example 5.10. Consider the code fragment in Listing 5.4. If the value of n is
unknown, then it is not possible to describe the instances of statement S using
a Presburger formula when using the value of the loop iterator i to identify
each loop instance. (If the value of n is known, then those values can simply be
enumerated individually as a Presburger formula.) In this example, it is still
possible to describe the instance set as

{ S[j] : 0 ≤ j ≤ N ∧ n ≥ 1 }, (5.6)
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where N and n are constant symbols that satisfy N = blog2 nc if n ≥ 1. Since
n is not changed during the execution of this program fragment, both n and
N can indeed be used as constant symbols. However, it is more difficult for a
compiler to extract such an instance set. Moreover, the relationship between n
and N cannot be expressed in the instance set. This means that during further
computations, the compiler may end up considering combinations of n and N
that cannot occur in practice. Finally, the value of i needs to be replaced by 2j

in other parts of the model, which also cannot be represented in a Presburger
formula.

It should be noted though that the instance set may also be an overapprox-
imation of the instances that actually get executed at run-time. Most analysis
techniques are safe with respect to overapproximations such that no further
adjustments are required if the polyhedral model is only used for analysis pur-
poses. If the polyhedral model is also used to transform the input program,
then additional measures need to be taken to ensure that the set of instances
that are actually executed at run-time is the same for both input and out-
put program. This usually requires keeping track of extra information in the
polyhedral statements.

5.2.3 Representation in pet

In pet, a dynamic execution instance is represented as a named integer tuple
where the name identifies the statement and the integer values correspond to
the values of the outer loop iterators, from outermost to innermost. If the
statement has a label, then that label is used as the name of the polyhedral
statement. Otherwise, the polyhedral statement is assigned a generated name.
In some cases, a “virtual iterator” is used to identify the iterations of a par-
ticular loop. This happens in particular if the loop does not have an explicit
iterator or if the value of this iterator cannot be used to uniquely identify the
iteration, but it can also happen in cases where using the actual iterator would
lead to complicated expressions in the rest of the model.

Example 5.11. Consider first the program in Listing 5.5 on the next page,
which is a completed version of the program fragment in Listing 5.2 on page 89.
The actual loop iterator i can be used to index the T-elements of the instance
set without any complication. The instance set extracted by pet is therefore
equal to the set in (5.4), as shown below.
iscc input ( ) with source in Listing 5.5 on the next page:

P := parse_file "demo/inner.c";

print P[0];

iscc invocation:

iscc < inner.iscc

iscc output:


P := parse_file "demo/inner.c";
print P[0];
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float inner(int n, float A[const restrict static n],

float B[const restrict static n])

{

float prod;

S: prod = 0;

L: for (int i = 0; i < n; ++i)

T: prod += A[i] * B[i];

return prod;

}

Listing 5.5: Input file

int g();

void h(int);

void f()

{

int a;

while (1) {

A: a = g();

B: h(a);

}

}

Listing 5.6: Input file

[n] -> { T[i] : 0 <= i < n; S[] }

Example 5.12. Consider now the program in Listing 5.6. The loop does not
have a loop iterator, so pet introduces one to index the elements in the instance
set, as shown below.
iscc input ( ) with source in Listing 5.6:

P := parse_file "demo/infinite.c";

print P[0];

iscc invocation:

iscc < infinite.iscc

iscc output:

{ B[t] : t >= 0; A[t] : t >= 0 }


float inner(int n, float A[const restrict static n],
        float B[const restrict static n])
{
        float prod;

S:      prod = 0;
L:      for (int i = 0; i < n; ++i)
T:              prod += A[i] * B[i];

        return prod;
}



int g();
void h(int);

void f()
{
        int a;

        while (1) {
A:              a = g();
B:              h(a);
        }
}



P := parse_file "demo/infinite.c";
print P[0];
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int f()

{

unsigned char k;

int a;

Init: a = 0;

for (k = 252; (k % 9) <= 5; ++k)

Inc: a = a + 1;

return a;

}

Listing 5.7: Input file

Example 5.13. Consider the program in Listing 5.7. The Inc-statement is
executed for the following value of the loop iterator k, 252, 253, 254, 255, 0, 1,
2, 3, 4, 5, in that order. While it is perfectly possible to construct an instance
set with these values for the elements, it is more convenient to use consecutive
values to represent the statement instances and this is what pet does below.
iscc input ( ) with source in Listing 5.7:

P := parse_file "demo/unsigned.c";

print P[0];

iscc invocation:

iscc < unsigned.iscc

iscc output:

{ Inc[k] : 252 <= k <= 261; Init[] }

If pet comes across any dynamic control in the analyzed program fragment,
then it will either keep track of extra information on the conditions under which
a given statement is executed in the corresponding polyhedral statement or it
will consider the dynamic control to be embedded in the enclosing statement.
The choice is controlled by the --encapsulate-dynamic-control command
line option, which is enabled by default by iscc, or by calling the function
pet_options_set_encapsulate_dynamic_control.

Example 5.14. Consider the program in Listing 5.8 on the facing page. Since
the if-condition is non-static, pet does not create a separate polyhedral state-
ment for the Update statement, but instead includes the if-statement in the
polyhedral statement. This is reflected in the label that is used to identify the
statements in the output below.
iscc input ( ) with source in Listing 5.8 on the next page:

P := parse_file "demo/max.c";

print P[0];


int f()
{
        unsigned char k;
        int a;

Init:   a = 0;
        for (k = 252; (k % 9) <= 5; ++k)
Inc:            a = a + 1;
        return a;
}



P := parse_file "demo/unsigned.c";
print P[0];



P := parse_file "demo/max.c";
print P[0];
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float max(unsigned n,

float A[const restrict static 1 + n])

{

float M;

Init: M = A[0];

for (unsigned i = 0; i < n; ++i)

If: if (A[1 + i] > M)

Update: M = A[1 + i];

return M;

}

Listing 5.8: Input file

int g(int);

int t(int);

void f(int n, int A[const restrict static n])

{

int done;

Init: done = 0;

While: while (!done) {

Reset: done = 1;

for (int i = 0; i < n; ++i) {

Update: A[i] = g(A[i]);

Test: if (t(A[i]))

Reinit: done = 0;

}

}

}

Listing 5.9: Input file

iscc invocation:

iscc < max.iscc

iscc output:

[n] -> { If[i] : 0 <= i < n; Init[] }

Example 5.15. Consider the program in Listing 5.9. Since pet is unable to
determine the number of iteration of the while-loop at compile-time, it con-
siders the entire loop as an indivisible polyhedral statement. Since the loop as


float max(unsigned n,
        float A[const restrict static 1 + n])
{
        float M;

Init:   M = A[0];
        for (unsigned i = 0; i < n; ++i)
If:             if (A[1 + i] > M)
Update:                 M = A[1 + i];

        return M;
}



int g(int);
int t(int);
void f(int n, int A[const restrict static n])
{
        int done;

Init:   done = 0;
While:  while (!done) {
Reset:          done = 1;
                for (int i = 0; i < n; ++i) {
Update:                 A[i] = g(A[i]);
Test:                   if (t(A[i]))
Reinit:                         done = 0;
                }
        }
}
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int g(int);

int t(int);

void f(int n, int A[const restrict static n])

{

int done;

Init: done = 0;

While: while (!done) {

#pragma scop

Reset: done = 1;

for (int i = 0; i < n; ++i) {

Update: A[i] = g(A[i]);

Test: if (t(A[i]))

Reinit: done = 0;

}

#pragma endscop

}

}

Listing 5.10: Input file

a whole is only executed once, there is only one dynamic execution instance of
this polyhedral statement, as shown below.
iscc input ( ) with source in Listing 5.9 on the previous page:

P := parse_file "demo/while.c";

print P[0];

iscc invocation:

iscc < while.iscc

iscc output:

[n] -> { While []; Init[] }

It is possible to tell pet to extract a polyhedral model from the body of
the loop by marking the body with pragmas and turning off the autodetect op-
tion as shown below. Note that in the pet library, the autodetect option is
turned off by default. The state of this option may be changed by calling the
pet_options_set_autodetect function.
iscc input ( ) with source in Listing 5.10:

P := parse_file "demo/while2.c";

print P[0];

iscc invocation:

iscc --no -pet -autodetect < while2.iscc


int g(int);
int t(int);
void f(int n, int A[const restrict static n])
{
        int done;

Init:   done = 0;
While:  while (!done) {
#pragma scop
Reset:          done = 1;
                for (int i = 0; i < n; ++i) {
Update:                 A[i] = g(A[i]);
Test:                   if (t(A[i]))
Reinit:                         done = 0;
                }
#pragma endscop
        }
}



P := parse_file "demo/while.c";
print P[0];



P := parse_file "demo/while2.c";
print P[0];
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iscc output:

[n] -> { Test[i] : 0 <= i < n; Reset []; Update[i] : 0 <= i <

↪→ n }

5.3 Access Relations

5.3.1 Definition and Representation

An access relation maps elements of the instance set to the data elements that
are accessed by that statement. It is usually important to make a distinction
between read and write accesses.

Definition 5.16 (Read Access Relation). The read access relation maps each
dynamic execution instance to the set of data elements read by the dynamic
execution instance.

Definition 5.17 (Write Access Relation). The write access relation maps each
dynamic execution instance to the set of data elements written by the dynamic
execution instance.

In some cases, it may be impossible or impractical to determine the exact
set of accessed data elements. Furthermore, even if it is possible to determine
the exact access relations, it may be impossible to represent them as a Pres-
burger relation. The access relations may therefore need to be approximated.
In case of a read, it is sufficient to determine an overapproximation of the
accessed data elements. The case of a write needs a bit more consideration, Note 5.3

however. Some uses of the write access relation, e.g., for computing the total
set of elements that may be accessed by a program fragment, also allow for
an overapproximation. Some other uses of the write access relation do not al-
low for overapproximations, but require an underapproximation instead. This
leads to the following three types of access relations.

Definition 5.18 (May-Read Access Relation). A may-read access relation is
a binary relation that contains the read access relation as a subset.

Definition 5.19 (May-Write Access Relation). A may-write access relation is
a binary relation that contains the write access relation as a subset.

Definition 5.20 (Must-Write Access Relation). A must-write access relation
is a binary relation that is a subset of the write access relation.

Note that these definitions do not specify the exact contents of the rela-
tions, but only that they contain at least some pairs of elements in case of the
may-read and may-write relation or that they contain at most some pairs of
elements in case of the must-write relation. This flexibility is useful in cases
where it is not clear at compile-time exactly which elements will be accessed
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by a given dynamic execution instance, or if this information cannot be repre-
sented exactly. In those cases where this information is available and can be
represented exactly, the access relations can be restricted/extended to include
exactly those data elements that are accessed. The may-write access relation is
then equal to the must-write access relation. In general, the must-write access
relation in a subrelation of the may-write access relation.

Exploiting the fact that the three access relation do not need to be exact,
they can all be represented as Presburger relations. The domain elements in
these relations are elements of the instance set and therefore have the same
representation. The range elements, i.e., the accessed data elements, are rep-
resented in a similar way. Like the elements of the instance set, these data
elements come in groups (typically arrays) and each element is identified by
the name of the group (array) and a sequence of integers that is unique with
the group (the index of the array element). Note that since scalars cannot
be indexed, the representation of a scalar consists of only a name and the
corresponding sequence of integers is empty. That is, a scalar is treated as a
zero-dimensional array.Note 5.4

Example 5.21. Consider once more the program in Listing 5.5. The access
relations are shown in the transcript below. Note that the may-write access
relation is equal to the must-write access relation because the accesses can be
completely determined at compile-time and can be described using a Presburger
formula. Note also that the access to prod in statement T updates prod and is
therefore considered both a read and a write.

iscc input ( ) with source in Listing 5.5 on page 93:

P := parse_file "demo/inner.c";

print "Must -write:";

print P[1];

print "May -write:";

print P[2];

print "May -read:";

print P[3];

iscc invocation:

iscc < inner_access.iscc

iscc output:

"Must -write:"

[n] -> { S[] -> prod []; T[i] -> prod[] : 0 <= i < n }

"May -write:"

[n] -> { S[] -> prod []; T[i] -> prod[] : 0 <= i < n }

"May -read:"

[n] -> { T[i] -> B[i] : 0 <= i < n; T[i] -> A[i] : 0 <= i <

↪→ n; T[i] -> prod[] : 0 <= i < n }


P := parse_file "demo/inner.c";
print "Must-write:";
print P[1];
print "May-write:";
print P[2];
print "May-read:";
print P[3];
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void set_diagonal(int n,

float A[const restrict static n][n], float v)

{

for (int i = 0; i < n; ++i)

A[i][i] = v;

}

void f(int n, float A[const restrict static n][n])

{

#pragma scop

S: set_diagonal(n, A, 0.f);

for (int i = 0; i < n; ++i)

for (int j = i + 1; j < n; ++j)

T: A[i][j] += A[i][j - 1] + 1;

#pragma endscop

}

Listing 5.11: Input file

Note that an access relation need not be a function, either because several
elements are effectively accessed directly or indirectly by the same instance of a
polyhedral statement, or because it is not clear which element is being accessed
such that several elements may be accessed. In the worst case, the entire array
may be accessed, where the set of array elements is derived from the declaration
of the array. If this array is a function argument of a C function, then it is
important to also specify the size of the array in the outer dimension by placing
the static keyword next to the otherwise dummy size expression. Note 5.5

Example 5.22. The analyzed program fragment in Listing 5.11 contains two
statements that access multiple elements of the same array from the same in-
stance. In statement S the accesses are performed indirectly through a call to
the set_diagonal function, while statement T simply contains two read ac-
cesses (one a pure read and one an update) to the same array. The complete
access relations are shown in the transcript below.
iscc input ( ) with source in Listing 5.11:

P := parse_file "demo/diagonal.c";

print "Must -write:";

print P[1];

print "May -write:";

print P[2];

print "May -read:";

print P[3];

iscc invocation:

iscc --no-pet -autodetect < diagonal.iscc


void set_diagonal(int n,
        float A[const restrict static n][n], float v)
{
        for (int i = 0; i < n; ++i)
                A[i][i] = v;
}

void f(int n, float A[const restrict static n][n])
{
#pragma scop
S:      set_diagonal(n, A, 0.f);
        for (int i = 0; i < n; ++i)
                for (int j = i + 1; j < n; ++j)
T:                      A[i][j] += A[i][j - 1] + 1;
#pragma endscop
}



P := parse_file "demo/diagonal.c";
print "Must-write:";
print P[1];
print "May-write:";
print P[2];
print "May-read:";
print P[3];
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void f(int n, int n2 , float A[const restrict static n2])

{

for (int i = 0; i < n; ++i)

A[i * i] = i;

}

Listing 5.12: Input file

iscc output:

"Must -write:"

[n] -> { T[i, j] -> A[i, j] : 0 <= i < n and j > i and 0 <=

↪→ j < n; S[] -> A[o0 , o0] : 0 <= o0 < n }

"May -write:"

[n] -> { T[i, j] -> A[i, j] : 0 <= i < n and j > i and 0 <=

↪→ j < n; S[] -> A[o0 , o0] : 0 <= o0 < n }

"May -read:"

[n] -> { T[i, j] -> A[i, j] : 0 <= i < n and j > i and 0 <=

↪→ j < n; T[i, j] -> A[i, -1 + j] : 0 <= i < n and j > i

↪→ and 0 < j < n }

Example 5.23. Listing 5.12 shows an example of a program where the index
expression cannot be represented using an affine expression. The must-write
access relation is therefore left empty, while the may-write access relation is
defined to access the entire array, where the constraints are derived from the
size of the array. The access relations derived by pet are shown below.
iscc input ( ) with source in Listing 5.12:

P := parse_file "demo/square.c";

print "Must -write:";

print P[1];

print "May -write:";

print P[2];

print "May -read:";

print P[3];

iscc invocation:

iscc < square.iscc

iscc output:

"Must -write:"

[n2 , n] -> { }

"May -write:"

[n2 , n] -> { S_0[i] -> A[o0] : 0 <= i < n and 0 <= o0 < n2 }

"May -read:"

[n2 , n] -> { }


void f(int n, int n2, float A[const restrict static n2])
{
        for (int i = 0; i < n; ++i)
                A[i * i] = i;
}



P := parse_file "demo/square.c";
print "Must-write:";
print P[1];
print "May-write:";
print P[2];
print "May-read:";
print P[3];
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Alternative 5.24 (Exact Access Relations). Many approaches do not
consider a separate may-write and must-write access relation, but sim-
ply a write-access relation. These approaches then also need to impose
restrictions on the kinds of accesses that may be performed by the input
program.

Alternative 5.25 (Per-Reference Access Relations). Many approaches
do not consider global access relations that describe accesses in the entire
code fragment, but rather maintain separate access relations for each array
reference in each polyhedral statement.

Alternative 5.26 (Access Functions). Some approaches do not allow
a reference inside a polyhedral statement instance to access more than
one data element and use functions to represent the accesses rather than
more general relations. These access functions are naturally defined per
reference and are typically also exact. Such access functions bear some re-
semblance to the index expressions of Section 5.8 Polyhedral Statements,
but they are not quite the same.

5.3.2 Aliasing

In order to be able to construct the may-read access relation and may-write
access relation correctly, the compiler needs to be aware of any aliasing that
may be occurring in the program. For example, if a statement writes to A

and A may be aliased to B, then the may-write access relation needs to in-
clude accesses to B from that statement. In the worst case, every polyhedral
statement instance that writes anything may have to be considered to write to
every element of every array, in which case the polyhedral model will not be
very useful. It is therefore best to avoid aliasing as much as possible, which
is why, in particular, most approaches to polyhedral compilation do not allow
any pointer manipulations.

There are essentially three approaches to avoiding aliasing.

• Ignore aliasing

Several tools, including pet, simply assume that there is no aliasing be-
tween different arrays.

• Require absence of aliasing

One variant of this approach is to extract polyhedral models from a source
language that does not permit aliasing. However, in a source language
such as C, aliasing does need to be taken into account. Locally declared
arrays cannot alias with each other, but arrays passed to a function are
actually pointers to the starts of the arrays (at least in C) and it is
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therefore possible for such arrays to alias. The restrict keyword can
be used on those pointers to indicate that they do not in fact alias. IfNote 5.6

an array of arrays is passed to a function, then the elements of the outer
array are also pointers and they should also be required to be annotated
with restrict to indicate that there is no aliasing among the rows of
the array. However, in general it is much preferred to pass a multi-
dimensional array instead. In such a multi-dimensional array, the rows
are stored successively in memory and are therefore guaranteed not to
alias.

• Check aliasing at run-time

In this approach, arrays are assumed not to alias for the purpose of
analyzing and transforming the code, but the groups of arrays that may
potentially alias are collected as well. Extra code is then inserted into
the transformed program that checks whether there is any aliasing inside
those groups at run-time. If so, the original code is executed. If not, the
transformed code is executed.

5.3.3 Structures

Accesses to plain structures, i.e., structures that do not contain any pointers, do
not in principle require any special treatment. It is only a matter of finding the
right representation for such accesses. Pointers could be allowed, but in order
to avoid aliasing, they would have to be annotated with restrict just like
function arguments or the elements of nested arrays. Recursive data structure
are more challenging, however, since it is not clear how to represent them in a
polyhedral framework.Note 5.7

In pet, accesses to structure fields are encoded using wrapped relations.
In particular, the range of the access relation is a wrapped relation with the
domain identifying the structure and the range identifying the field inside the
structure. The identifier of the wrapped relation is composed of the name of
the outer array or scalar and the name of the field.

Example 5.27. Consider the program in Listing 5.13 on the facing page. It
contains a write access to the b field of elements of the c array, which are
structures of type struct s. The transcript below prints the corresponding
access relation.
iscc input ( ) with source in Listing 5.13 on the next page:

P := parse_file "demo/struct.c";

print P[1];

iscc invocation:

iscc < struct.iscc

iscc output:

{ S[i] -> c_b[c[i, i] -> b[9 - i]] : 0 <= i <= 9 }


P := parse_file "demo/struct.c";
print P[1];
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struct s {

int a;

int b[10];

};

void f(struct s c[static 10][10])

{

for (int i = 0; i < 10; ++i)

S: c[i][i].b[9 - i] = 0;

}

Listing 5.13: Input file

struct S {

struct {

int a[10];

} f[10];

};

void foo()

{

struct S s;

#pragma scop

for (int i = 0; i < 10; ++i)

for (int j = 0; j < 10; ++j)

s.f[i].a[j] = i * j;

#pragma endscop

}

Listing 5.14: Input file

If the accessed field is itself a structure or an array of structures, then
accesses to fields in those structure are represented as structure field accesses
in a structure that is itself a structure field access. That is, the domain of
the wrapped relation is itself a wrapped relation representing the access to the
inner structure. This process continues recursively for any further nesting of Note 5.8

field accessing.

Example 5.28. Consider the program in Listing 5.14. It contains a write
access to the a field of elements of an f array, which is itself a field of a variable
of type struct s. The transcript below prints the corresponding access relation.
iscc input ( ) with source in Listing 5.14:

P := parse_file "demo/struct2.c";


struct s {
        int a;
        int b[10];
};

void f(struct s c[static 10][10])
{
        for (int i = 0; i < 10; ++i)
S:              c[i][i].b[9 - i] = 0;
}



struct S {
        struct {
                int a[10];
        } f[10];
};

void foo()
{
        struct S s;

#pragma scop
        for (int i = 0; i < 10; ++i)
                for (int j = 0; j < 10; ++j)
                        s.f[i].a[j] = i * j;
#pragma endscop
}



P := parse_file "demo/struct2.c";
print P[1];
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struct c {

float re;

float im;

};

void f(struct c A[const static 10])

{

S: A[0] = A[2];

T: A[1].re = A[0].im;

}

Listing 5.15: Input file

print P[1];

iscc invocation:

iscc < struct2.iscc

iscc output:

{ S_2[i, j] -> s_f_a[s_f[s[] -> f[i]] -> a[j]] : 0 <= i <= 9

↪→ and 0 <= j <= 9 }

Note that an access to an entire structure means that all fields of the struc-
ture are accessed. This is then also how it is represented in pet. This handling
of structure accesses is similar to how accesses to entire arrays or rows of an
array are handled when they are passed to a function.

Example 5.29. Consider the program in Listing 5.15. Statement S copies an
entire structure from one element of A to another element of A. This means
that both fields of the structure are read and written. The corresponding access
relations are shown in the transcript below.
iscc input ( ) with source in Listing 5.15:

P := parse_file "demo/struct3.c";

print "Must -write:";

print P[1];

print "May -write:";

print P[2];

print "May -read:";

print P[3];

iscc invocation:

iscc < struct3.iscc

iscc output:


struct c {
        float re;
        float im;
};

void f(struct c A[const static 10])
{
S:      A[0] = A[2];
T:      A[1].re = A[0].im;
}



P := parse_file "demo/struct3.c";
print "Must-write:";
print P[1];
print "May-write:";
print P[2];
print "May-read:";
print P[3];
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"Must -write:"

{ S[] -> A_re[A[0] -> re[]]; T[] -> A_re[A[1] -> re[]]; S[]

↪→ -> A_im[A[0] -> im[]] }

"May -write:"

{ S[] -> A_re[A[0] -> re[]]; T[] -> A_re[A[1] -> re[]]; S[]

↪→ -> A_im[A[0] -> im[]] }

"May -read:"

{ T[] -> A_im[A[0] -> im[]]; S[] -> A_re[A[2] -> re[]]; S[]

↪→ -> A_im[A[2] -> im[]] }

5.3.4 Tagged Access Relations

The standard access relations map statement instances to data elements ac-
cessed by that statement instance. However, a given statement may reference
the same data structure several times and in some cases it is important to make
a distinction between the individual references. For example, when PPCG is de-
termining which data to copy to/from a device, it checks which of the write
references produce data that is only used inside a given kernel. This requires
the reference to be identifiable from the dependence relations, which in turn
requires them to be encoded in the access relations.

In pet, unique identifiers are generated for each reference in the program
fragment. These identifiers are then used to “tag” the statement instance
performing the access in what are called tagged access relations. In particular,
the domain of such a tagged access relation is a wrapped relation with as
domain the statement instance and as range the reference identifier. The tags
can be removed from such a tagged access relation by computing the domain
product domain factor. The tagged access relations can be extracted from a
pet_scop using the following functions.

• pet_scop_get_tagged_may_reads,

• pet_scop_get_tagged_may_writes, and

• pet_scop_get_tagged_must_writes.

Example 5.30. python input ( ) with source in Listing 5.11 on
page 99:

import isl

import pet

scop = pet.scop.extract_from_C_source("demo/diagonal.c",

"f");

may_read = scop.get_may_reads ()

tagged_may_read = scop.get_tagged_may_reads ()

print may_read

print tagged_may_read

factor = tagged_may_read.domain_factor_domain ()


import isl
import pet

scop = pet.scop.extract_from_C_source("demo/diagonal.c",
                                      "f");
may_read = scop.get_may_reads()
tagged_may_read = scop.get_tagged_may_reads()
print may_read
print tagged_may_read
factor = tagged_may_read.domain_factor_domain()
print may_read.is_equal(factor)
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print may_read.is_equal(factor)

python invocation:

python < tagged.py

python output:

[n] -> { T[i, j] -> A[i, j] : 0 <= i < n and j > i and 0 <=

↪→ j < n; T[i, j] -> A[i, -1 + j] : 0 <= i < n and j > i

↪→ and 0 < j < n }

[n] -> { [T[i, j] -> __pet_ref_2 []] -> A[i, j] : 0 <= i < n

↪→ and j > i and 0 <= j < n; [T[i, j] -> __pet_ref_3 []]

↪→ -> A[i, -1 + j] : 0 <= i < n and j > i and 0 < j < n

↪→ }

True

5.4 Dependence Relations

This section only describes the general concept of dependence relations. The
computation of dependence relations is described in Chapter 6 Dependence
Analysis

In general, a dependence is a pair of statement instances that expresses that
the second statement instance should be executed after the first instance. A
dependence relation is a collection of dependences. The cause of a dependence
is usually that the two statement instances involved access the same memory
element.

Different types of dependences can be distinguished depending on the types
of the two accesses involved.

Definition 5.31 (Read-after-Write Dependence Relation). The read-after-
write dependence relation maps a statement instance i to a statement instance
j if j is executed after i and if it reads from a data element that is written by
i.

Definition 5.32 (Write-after-Read Dependence Relation). The write-after-
read dependence relation maps a statement instance i to a statement instance
j if j is executed after i and if it writes to a data element that is read by i.

Definition 5.33 (Write-after-Write Dependence Relation). The write-after-
write dependence relation maps a statement instance i to a statement instance
j if j is executed after i and if it writes to a data element that is written by i.

As in the case of access relations, it may not be possible to compute these
relations exactly or to represent them exactly as Presburger relations. However,
since they are only meant to express that the second statement instance should
be executed after the first, it is safe to consider overapproximations. Any read-
after-write dependence relation mentioned in the rest of this manual will then
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for (int i = 0; i < n; ++i) {

S: t = f1(A[i]);

T: B[i] = f2(t);

}

Listing 5.16: Code with false dependences

(a) Read-after-write dependences (b) Dataflow dependences

(c) Write-after-read dependences (d) Write-after-write dependences

Figure 5.17: Dependences of the code in Listing 5.16. Instances of statement
S are represented as , instances of statement T are represented as .

actually be a may-read-after-write dependence relation, and similarly for any
write-after-read dependence relation or write-after-write dependence relation.

The elements of the read-after-write dependence relation are called the read-
after-write dependences. They are needed because the read access may read a
value that was written by the write access. The elements of the write-after-
read dependence relation are called the write-after-read dependences or the
anti-dependences. They are needed because the write access may overwrite a
value that was read by the read access. The elements of the write-after-write
dependence relation are called the write-after-write dependences or the output
dependences. They are needed because the second write access may overwrite a
value that was written by the first write access. Enforcing the first write to be
executed before the second is important to ensure that the final value written
to a data element in the original program is not overwritten by a value that
was written to it before in the original program.

Note that a pair of read accesses does not give rise to a dependence because
the two reads do not influence each other. It can however still be useful to
consider pairs of statement instances that read the same memory element for
optimization purposes. In analogy with the actual dependences, such pairs of
statement instances are sometimes called read-after-read dependences or input
dependences. Note that in contrast to the case of the actual dependences, for
input dependences the order of the two statement instances is of no importance.

Example 5.34. Consider the code in Listing 5.16. Both statements access the
t scalar, with S writing to the scalar and T reading from the scalar. The depen-
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dence relations are then as follows. The read-after-write dependence relation:

{ S[i]→ T[i′] : i′ ≥ i }. (5.7)

This relation is shown in Figure 5.17a. The write-after-read dependence rela-
tion:

{ T[i]→ S[i′] : i′ > i }. (5.8)

This relation is shown in Figure 5.17c. The write-after-write dependence rela-
tion:

{ S[i]→ S[i′] : i′ > i }. (5.9)

This relation is shown in Figure 5.17d. The computation of these dependence
relation is illustrated in Example 6.1 on page 134.

The main purpose of the dependences described so far is to make sure
that values are written to memory before they are read and that they are
not overwritten in between. In some cases, there may be so many of these
dependences that the execution order of the statement instances can hardly be
changed or even not at all. For example, if a temporary scalar variable is used
to store different data, then the dependences described above will serialize the
statement instances accessing that scalar variable. By storing different data in
different memory locations, some of these dependences are no longer required
and more freedom is created for changing the execution order of the statement
instances. In particular, (some) anti-dependences and output dependences can
be removed and it is for this reason that they are also collectively known as
the false dependences.

In order to be able to map different data to different memory location, it
is important to determine where a new value is written and how long it needs
to be stored. This information is captured by the dataflow dependences. In
particular, there is a dataflow dependence between any write to a memory
location and any later read from the same memory location that still finds the
value that was written by the write access. That is, the memory location was
not overwritten in between.

Definition 5.35 (Dataflow Dependence Relation). The dataflow dependence
relation is a subset of the (exact) read-after-write dependence relation contain-
ing those pairs of statement instances for which there is no intermediate write
to the same data element accessed by both statement instances.

The dataflow dependences are also known as value-based dependences be-
cause the value is preserved along the dependence. In contrast, the previously
described dependences are also known as memory-based dependences because
they merely access the same memory location.Note 5.9

As usual, it may not be possible to determine or represent the dataflow
dependence relation exactly and, as in the case of write accesses, it is important
to make a distinction between potential dataflow and definite dataflow. This
leads to the following two types of dataflow dependence relations.
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Definition 5.36 (May-Dataflow Dependence Relation). A may-dataflow de-
pendence relation is a binary relation that contains the dataflow dependence
relation as a subset.

Definition 5.37 (Must-Dataflow Dependence Relation). A must-dataflow de-
pendence relation is a binary relation that is a subset of the dataflow dependence
relation.

Both also come in a “tagged” form where each statement instance is accom-
panied by a reference identifier, as in the case of the tagged access relations
of Section 5.3.4 Tagged Access Relations. These are called the tagged may-
dataflow dependence relation and the tagged must-dataflow dependence rela-
tion. The must-dataflow dependence relation is a subset of the may-dataflow
dependence relation. If the dataflow analysis can be performed exactly, then
the two are equal to each other. The may-dataflow dependence relation is itself
a subrelation of the (may-)read-after-write dependence relation. The untagged
must-dataflow dependence relation is only useful if each statement contains at
most one write access.

Example 5.38. Consider once more the code in Listing 5.16 on page 107.
Each value written to the scalar t by an instance of statement S is overwritten
by the next instance of the same statement. This means that the value is only
read by the (single) intermediate instance of statement T. That is, the dataflow
dependence relation is

{ S[i]→ T[i] }. (5.10)

Note that this relation is a strict subrelation of the read-after-write dependence
relation of (5.7). It is shown in Figure 5.17b.

Alternative 5.39 (Per-Statement-Pair Dependence Relation). Many
approaches do not operate on a single dependence relation containing pairs
of instances of different polyhedral statements, but instead keep track of
separate dependence relations for each pair of statements. In some cases,
the dependence relations are further broken up, possibly along the dis-
juncts of a representation in disjunctive normal form.

Alternative 5.40 (Dependence Polyhedron). Some approaches repre-
sent dependence relations as polyhedra, where the input and output tuples
are simply concatenated. This representation is called the dependence
polyhedron. Note 5.10Since a single polyhedron cannot represent a disjunction, this
implies a decomposition along disjuncts of a representation in disjunctive
normal form. Furthermore, plain polyhedra do not support existentially
quantified variables, meaning that in general, dataflow dependence rela-
tions cannot be represented very accurately.
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for (int i = 0; i < n; ++i) {

S: t[i] = f1(A[i]);

T: B[i] = f2(t[i]);

}

Listing 5.18: Code without false dependences

Alternative 5.41 (Depends-on Relation). Some authors prefer to con-
sider dependences that go from a statement instance to the statement
instances on which it depends. That is, the position of the two state-
ment instances is reversed compared to the dependence relations defined
above. In the case of exact dataflow dependences, this means that the
dependence relation can be represented as a function since for each read
operation there is at most one write operation that writes the value that
is read by the read operation.

5.5 Data-Layout Transformation

A data-layout transformation changes the way data is stored in memory. This
may just be a reordering of the data elements, but it may also map several data
elements in the original program to a single data element, or, conversely, map
a single data element in the original program to multiple data elements. Data-
layout transformations that map several elements to a single element are called
contractions. Data-layout transformations that map a single element to mul-Note 5.11

tiple elements are called expansions. Note that a data-layout transformationNote 5.12

typically also requires modifications to the variable declarations.

In isl, a data-layout transformation can be represented as a multi-space
piecewise tuple of quasi-affine expressions. The range of this function corre-
sponds to the new data elements. In simple cases, where the data is uniformly
reordered, the domain of the function can correspond directly to the original
data elements. If the transformation depends on the statement instance, then
the domain should be a (wrapped) access relation. In particular, expansions
depend on the statement instance. The transformation may also be reference
specific, in which case the domain should be a (wrapped) tagged access relation.

Example 5.42. Consider once more the code in Listing 5.16 on page 107.
As explained in Example 5.34 on page 107, the code exhibits false dependences.
They can be removed by expanding the t scalar to an array of a size that is equal
to the number of iterations in the loop. In particular, the following expansion
can be applied:

{ [S[i]→ t[]]→ t[i]; [T [i]→ t[]]→ t[i] }. (5.11)

The result of this expansion is shown in Listing 5.18. Conversely, a contraction
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of the form

{ [S[i]→ t[i]]→ t[]; [T [i]→ t[i]]→ t[] } (5.12)

or simply

{ t[i]→ t[] } (5.13)

can be applied to the code in Listing 5.18 to obtain the code in Listing 5.16.

5.6 Schedule

5.6.1 Schedule Definition and Representation

Definition 5.43 (Instance Set). A schedule S defines a strict partial order
<S on the elements of the instance set.

In particular, a schedule describes or prescribes the order in which the ele-
ments of the instance set are or should be executed. Note that some approaches
do not keep track of a separate schedule but rather encode the execution or-
der directly into the instance set(s) as explained in Alternative 5.8 Ordered
Instance Set. Other approaches, at least those that perform program trans-
formations, typically keep track of at least two schedules, one that represents
the original execution order and that is called the input schedule, and one that
represents the desired final execution order. The latter may be constructed in-
crementally from the input schedule or it may be computed from scratch based
on the dependences as explained in Section 5.9 Operations.

A naive way of representing a schedule S would be to directly encode the
strict partial order <S as a Presburger relation. However, such a relation would
contain almost half of all possible pairs of statement instances and its repre-
sentation would therefore be at least quadratic in the number of statements.
This order is therefore invariably represented indirectly through some form of
schedule.

One way of representing a schedule that is fairly close to that of an impera-
tive program is in the form of a schedule tree. The two main ways of expressing Note 5.13

execution order in an imperative program are compound statements, express-
ing that the constituent statements are executed in the given order, and loops,
expressing the order in which different instances of the same statements are
executed. The main types of nodes in a schedule tree correspond to these two
mechanisms. In particular, a sequence node in a schedule tree expresses that Note 5.14

its children are executed in the given order, while a band node expresses the
order in which different instances of statements are executed. Each child of
the sequence node is annotated with a Presburger set describing the statement
instances represented by that child. This set is called the filter of the child.
The order expressed by a band node is given by a tuple of multi-space piece-
wise quasi-affine expressions, which is called the partial schedule of the band.
A statement instance is ordered before another statement instance by a band
node if it is assigned a lexicographically smaller value by the partial schedule
of the band node. For completeness, a leaf node is also introduced that is used



112 CHAPTER 5. POLYHEDRAL MODEL

{ S[] }, { T[i] }

⊥ { T[i]→ [i] }

⊥

Figure 5.19: Schedule tree for the program fragment in Listing 5.2 on page 89

to represent the leaves of the schedule tree. With the introduction of such leaf
nodes, all band nodes have exactly one child, while all leaf nodes have zero
children. Leaf nodes are denoted by ⊥ is some figures, but they will usually
simply be omitted.

Example 5.44. Consider once more the program fragment in Listing 5.2 on
page 89. A schedule tree representation of the input schedule of this program
fragment is shown in Figure 5.19. The root node is a sequence corresponding
to the top-level sequence of statements in Listing 5.2, the statement S and
the for-loop. The sequence node expresses that the single instance of the S

statement is executed before all instances of the T statement. In this figure,
the two Presburger sets describing the statement instances belonging to the two
children are written inside the sequence node, separated by a comma. The
first child only contains one statement instance and therefore does not need to
express any further ordering. It is then simply a leaf node. The second child
is a band node corresponding to the for-loop in Listing 5.2. It expresses that
the instances T[i] are executed according to increasing values of i. Given the
encoding of Example 5.4 on page 89, where this i corresponds to the value of
the loop iterator, this means that the instances are executed in the order of the
for-loop. The single child of this band node is again a leaf node.

Algorithm 5.1 on the facing page shows how to determine the execution
order of two statement instances by moving down the schedule tree. If a leaf
node is reached, the schedule tree does not specify the order of the two in-
stances. If the two instances belong to the same child of a sequence node, the
algorithm moves down to that child. If the two instances belong to different
children of a sequence node, then the order of these children determines the
order of the statement instances. If a band node is reached, the values of the
partial schedule evaluated at the two instances determines their order. If they
get assigned the same value, then the algorithm moves down to the single child
of the band node. Note that the execution order may not be a total order such
that both i <S j and j <S i may be false. By determining the order between
any pair of statements, the complete order relation can be constructed.
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Input: Schedule S, statement instances i and j
Output: True if i <S j; false otherwise

Start at root of schedule tree S
while current node is not a leaf node do

if current node is a sequence node then
if i and j appear in same child then

Move to common child
else if i appears in earlier child then

return true
else

return false
end

else
Let P be the partial schedule of the current band node
if P (i) = P (j) then

Move to single child
else if P (i) ≺ P (j) then

return true
else

return false
end

end

end
return false

Algorithm 5.1: Execution order encoded by a schedule tree

Example 5.45. The order relation defined by the schedule tree in Figure 5.19
is

{ S[]→ T[i] : 0 ≤ i < n; T[i]→ T[i′] : 0 ≤ i < i′ < n }. (5.14)

A schedule can also be encoded into a Presburger relation by essentially
flattening the schedule tree into a single band node and then converting the re-
sulting tuple of multi-space piecewise quasi-affine expressions into a Presburger
relation. In particular, this means that the range of the relation lives in a single
space and that the execution order is determined by the lexicographical order
in this space. The flattening procedure is shown schematically in Algorithm 5.2
on the next page. The procedure returns either a leaf (if the input consists of
only a leaf) or a band node. If the root of the input is a band node, then
the result is the concatenation of that node with the flattening of the single
child node. Concatenation means that essentially the flat range product of the
partial schedules in computed. If the root of the input is a sequence node, then
the children are assigned a sequence number that is combined with the partial
schedule of the flattened child. If this flattened child is a leaf node, then it is
treated as a zero-dimensional band node. If the flattened children do not all
have the same number of members, then those with fewer members are padded
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Input: Schedule (sub)tree
Output: Flattened schedule (sub)tree

if current node is a leaf node then
return leaf

else if current node is a band node then
flatten child of band node
if child node is a leaf node then

return band
else

concatenate current band with child
return concatenated band

end

else
flatten children of sequence node
pad lower-dimensional child bands (e.g., with zeros)
let n be the number of children
for i← 0 to n− 1 do

construct expression assigning i to statement instances of child i
concatenate it with (padded) child schedule

end
take union of concatenations
return union band

end

Algorithm 5.2: Flatten schedule tree

with arbitrary values, say zero. The union of all these combinations then forms
the partial schedule of the flattened band node.

Example 5.46. Consider the schedule tree in Figure 5.19 on page 112. The
first child of the root node is a leaf and so does not need any further processing.
From the point of view of the root node, it is treated as a zero-dimensional
band node with partial schedule { S[] → [] }. The second child of the root
node is a band node with only a leaf node as child. This node therefore also
does not require any further processing. Since the band of the first child is
zero-dimensional, while that of the second child is one-dimensional, the first is
padded to { S[] → [0] }. The two band schedules are then prefixed by a num-
ber reflecting their position in the sequence, resulting in { S[] → [0, 0] } and
{ T[i]→ [1, i] }. Finally, the flattened sequence node has the union of these two
as partial schedule, i.e.,

{ S[]→ [0, 0]; T[i]→ [1, i] }. (5.15)

Alternative 5.47 (Per-Statement Schedules). Some authors consider
pet-statement schedules instead of a single schedule that describes the rel-
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void matmul(int M, int N, int K,

float A[restrict static M][K],

float B[restrict static K][N],

float C[restrict static M][N])

{

#pragma scop

for (int i = 0; i < M; ++i)

for (int j = 0; j < N; ++j) {

I: C[i][j] = 0;

for (int k = 0; k < K; ++k)

U: C[i][j] = C[i][j] + A[i][k] * B[k][j];

}

#pragma endscop

}

Listing 5.20: Input file

ative order of all statement instances. However, this only reflects a detail
about how the schedule is represented. Even though different pieces of
the schedule are stored across the statements, they cannot be interpreted
independently of each other. Well-known representations of this type are
“Kelly’s abstraction”and “2d+ 1”-schedules. Note 5.15

While flattening a schedule tree results in a Presburger relation that ex-
presses the same ordering as the entire schedule, it is sometimes sufficient to
know the ordering of statement instances at a given node in the schedule tree.
In this case, the ordering imposed by the sequence nodes is irrelevant, since all
statement instances that reach a given node are in the same child of each of
the outer sequence nodes. The ordering is then given by the concatenation of
the partial schedules of all outer band nodes. This concatenation is called the
prefix schedule at the given node.

Example 5.48. Consider the program shown in Listing 5.20. The prefix sched-
ule at the band node corresponding to the outer for-loop is

{ I[i, j]→ []; U[i, j, k]→ [] }. (5.16)

At the node corresponding to the second loop, it is

{ I[i, j]→ [i]; U[i, j, k]→ [i] } (5.17)

and at the node corresponding to the third loop, it is

{ U[i, j, k]→ [i, j] }. (5.18)

Finally, at the leaf corresponding to the U statement, it is

{ U[i, j, k]→ [i, j, k] }. (5.19)


void matmul(int M, int N, int K,
    float A[restrict static M][K],
    float B[restrict static K][N],
    float C[restrict static M][N])
{
#pragma scop
    for (int i = 0; i < M; ++i)
        for (int j = 0; j < N; ++j) {
I:          C[i][j] = 0;
            for (int k = 0; k < K; ++k)
U:              C[i][j] = C[i][j] + A[i][k] * B[k][j];
        }
#pragma endscop
}
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5.6.2 Representation in isl

In isl, a schedule tree is represented using the isl_schedule type. The nodes
in this schedule tree may be of different types and the encoding is slightly
different from that described in the previous section. In particular, band nodes
appear directly in this encoding. A “sequence node”, however, is represented as
a pure sequence node that only expresses that its children are executed in order
and filter nodes that describe the statement instances that are executed by any
particular child. Moreover, in an isl_schedule, the root of the schedule tree is
a domain node that contains the entire instance set. In a schedule extracted by
pet, the tuple identifiers of the partial schedules of the band nodes are derived
from the labels on the corresponding for-statements, if any.

The textual representation of an isl_schedule is a YAML document. ANote 5.16

node in a YAML document is either a scalar, a sequence or a mapping (asso-
ciative array), where the elements in the sequence and the keys and values in
the mapping are themselves YAML nodes. This document can be printed in
either block style or in flow style. The individual nodes in a schedule tree are
encoded in the YAML document as follows.

domain node A YAML mapping with as keys domain and child, and as
corresponding values the instance set and the single child of the domain
node.

band node A YAML mapping with as keys schedule and child, and as
corresponding values the partial schedule of the band node and the single
child of the band node. The coincident key is explained in Section 5.6.3
Encoding Parallelism.

sequence node A YAML mapping with as only key sequence and as cor-
responding value a YAML sequence with as entries the children of the
sequence node.

filter node A YAML mapping with as keys filter and child, and as corre-
sponding values the subset of the instance set preserved by the filter and
the single child of the domain node.

If a node has a single child and if this child is a leaf node, then the child may be
omitted from the textual representation. The set node and its representation
are introduced in Section 5.6.3 Encoding Parallelism.

Example 5.49. Consider the schedule below, which is the isl representation
of the schedule in Figure 5.19 on page 112. The schedule is printed twice, once
in block format and once in flow format. In order to force printing in flow
format, the second instance is printed as part of a list. The structure of the
isl representation is the same as that of the schedule tree in Figure 5.19 on
page 112. The main differences are the extra domain node in the root and the
omission of the leaf nodes.
iscc input ( ) with source in Listing 5.5 on page 93:


P := parse_file "demo/inner.c";
print P[4];
print (P[4],0);
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P := parse_file "demo/inner.c";

print P[4];

print (P[4] ,0);

iscc invocation:

iscc < inner_schedule.iscc

iscc output:

domain: "[n] -> { T[i] : 0 <= i < n; S[] }"

child:

sequence:

- filter: "[n] -> { S[] }"

- filter: "[n] -> { T[i] }"

child:

schedule: "[n] -> L[{ T[i] -> [(i)] }]"

({ domain: "[n] -> { T[i] : 0 <= i < n; S[] }", child: {

↪→ sequence: [ { filter: "[n] -> { S[] }" }, { filter: "

↪→ [n] -> { T[i] }", child: { schedule: "[n] -> L[{ T[i]

↪→ -> [(i)] }]" } } ] } }, 0)

Navigation through a schedule tree in isl is done by means of an object of
type isl_schedule_node, which points to a specific node in a tree. A pointer
to root of a schedule tree can be obtained using isl_schedule_get_root, while
isl_schedule_node_parent and isl_schedule_node_child can be used to
move up and down the tree. The schedule tree into which a schedule node
is pointing can be retrieved using isl_schedule_node_get_schedule. This
is especially useful if the schedule node has been used to modify the schedule
tree. The textual representation of an isl_schedule_node is the same as that
of the tree into which it points, except that in block style the node it points to
is marked with the comment “YOU ARE HERE”. The python interface prints
such objects in block style.

Example 5.50. The transcript below illustrates how to move down a schedule
tree and what the textual representation looks like.
python input ( ) with source in Listing 5.5 on page 93:

import isl

import pet

pet.options.set_autodetect(True)

scop = pet.scop.extract_from_C_source("demo/inner.c",

"inner")

schedule = scop.get_schedule ()

node = schedule.get_root (). child (0). child (1). child (0)

print node

python invocation:


import isl
import pet

pet.options.set_autodetect(True)
scop = pet.scop.extract_from_C_source("demo/inner.c",
                                      "inner")
schedule = scop.get_schedule()
node = schedule.get_root().child(0).child(1).child(0)
print node
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python < inner_schedule.py

python output:

domain: "[n] -> { T[i] : 0 <= i < n; S[] }"

child:

sequence:

- filter: "[n] -> { S[] }"

- filter: "[n] -> { T[i] }"

child:

# YOU ARE HERE

schedule: "[n] -> L[{ T[i] -> [(i)] }]"

A Presburger relation representation of an isl_schedule can be obtained
using the isl_schedule_get_map function. The result is an isl_union_map.
In iscc, this operation is called map.

Example 5.51. The transcript below shows how to convert the schedule tree
of Example 5.49 on page 116 to the flattened representation (5.15) of Exam-
ple 5.46 on page 114.

iscc input ( ) with source in Listing 5.5 on page 93:

P := parse_file "demo/inner.c";

print map(P[4]);

iscc invocation:

iscc < flatten.iscc

iscc output:

[n] -> { T[i] -> [1, i]; S[] -> [0, 0] }

The prefix schedule at a given node can be obtained in different represen-
tations through one of these functions:

• isl_schedule_node_get_prefix_schedule_multi_union_pw_aff

• isl_schedule_node_get_prefix_schedule_union_pw_multi_aff

• isl_schedule_node_get_prefix_schedule_union_map

Other operations include computing the pullback of a schedule with respect
to a multi-space piecewise tuple of quasi-affine expressions through a call to
isl_schedule_pullback_union_pw_multi_aff. In the python interface, this
function is called pullback.


P := parse_file "demo/inner.c";
print map(P[4]);
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5.6.3 Encoding Parallelism

As explained in Section 5.1 Main Concepts, the order relation <S defined by
a valid schedule S needs to include the dependences D. However, this order
relation need not be total, meaning that there may be some pairs of statement
instances for which the first is not ordered before the second and the second
is not ordered before the first either. Such pairs of statement instances are
then allowed to be executed simultaneously, i.e., in parallel, by the schedule.
Due to the above-mentioned constraint, this can only happen if there are no
dependences (directly or indirectly) between the two statement instances.

One way of exploiting such parallelism is to construct an equivalence rela-
tion E that contains the order relation <S as a subset. That is,

(<S) ⊆ E. (5.20)

The cells in the corresponding partition are completely independent, in the
sense that no pair of elements from distinct cells are ordered with respect to
each other. This equivalence relation is typically specified as the equivalence
kernel of a function called a placement. In particular, the placement maps
statement instances to (virtual) processors that can execute their instances in
parallel with those of other processors. The placement is called trivial if all
statement instances are mapped to the same processor.

Example 5.52. Consider the dependence relation

D = {S[i, j, k]→ S[i, j + 1, k′] }. (5.21)

The dependence relation can be extended to the order relation

O = { S[i, j, k]→ S[i, j′, k′] : j′ > j }, (5.22)

which is therefore a valid order with respect to the dependences. The equivalence
kernel of the function

f(S[i, j, k]) 7→ i (5.23)

is the equivalence relation

E = { S[i, j, k]→ S[i′, j′, k′] : f(S[i, j, k]) = f(S[i′, j′, k′]) }
= { S[i, j, k]→ S[i, j′, k′] },

(5.24)

which in turn is a further extension of the order relation. That is,

D ⊆ O ⊆ E. (5.25)

This means that the instances S[i, j, k] can be mapped to different processors
according to the value of i without violating any dependences. The transcript
below verifies (5.25) and checks that O is indeed a strict partial order.
iscc input ( ):


D := { S[i,j,k] -> S[i,j+1,k'] };
O := { S[i,j,k] -> S[i,j',k'] : j' > j };
P := { S[i,j,k] -> [i] };
E := P . P^-1;
print "Dependences form subset of order relation:";
D <= O;
print "Order relation is a strict partial order:";
(O . O <= O) * (O * O^-1 = {});
print "Order relation is subset of equivalence relation:";
O <= E;
print "Equivalence relation:";
print E;
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D := { S[i,j,k] -> S[i,j+1,k’] };

O := { S[i,j,k] -> S[i,j’,k’] : j’ > j };

P := { S[i,j,k] -> [i] };

E := P . P^-1;

print "Dependences form subset of order relation:";

D <= O;

print "Order relation is a strict partial order:";

(O . O <= O) * (O * O^-1 = {});

print "Order relation is subset of equivalence relation:";

O <= E;

print "Equivalence relation:";

print E;

iscc invocation:

iscc < placement.iscc

iscc output:

"Dependences form subset of order relation:"

True

"Order relation is a strict partial order:"

True

"Order relation is subset of equivalence relation:"

True

"Equivalence relation:"

{ S[i, j, k] -> S[i, j’, k’] }

Note that a direct application of Algorithm 5.1 on page 113 to derive an
execution order from a schedule tree that contains at least one band or se-
quence node will never produce a relation that allows for an extension to the
equivalence kernel of a non-trivial placement function. Instead, if a non-trivial
placement is being used, the order relation is defined to be the intersection of
the order relation derived from the schedule and the equivalence kernel of the
placement function. It is then this intersection that needs to contain all the
dependences for the combination of placement and schedule to be valid.

The use of a (global) placement can in general only exploit some of the
available parallelism. In particular, any pair of instances that are connected
through an undirected path in the order relation cannot be executed in parallel
this way. For example, two instances that both depend on a third instance
cannot simply be mapped to separate processors without any synchronization
or reduplication of instances since they both need to be executed after this third
instance, while the latter can only be mapped to one of the two processors. If
synchronization is allowed, then the two instances can still be executed in
parallel. In particular, if the ancestors of a node in a schedule tree already
ensure that the third instance is executed before the other two instances, then
those two instances can be executed in parallel at that point in the schedule
tree.
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In order to exploit such local parallelism, a local placement can be con-
structed such that its equivalence relation satisfies (5.20), when restricted to
the pairs of statement instances that are not already scheduled apart by the
ancestors of the node. That is, (5.20) only needs to be satisfied for pairs of
statement instances with the same value for the prefix schedule at the current
node.

Example 5.53. Consider once more the dependence relation (5.21) extended
to the order relation (5.22). Furthermore, assume that the prefix schedule at a
given node in the schedule tree is

{ S[i, j, k] 7→ [j] } (5.26)

and take as placement the function

f ′(S[i, j, k]) 7→ k. (5.27)

The corresponding equivalence kernel is

E′ = { S[i, j, k]→ S[i′, j′, k′] : f ′(S[i, j, k]) = f ′(S[i′, j′, k′]) }
= { S[i, j, k]→ S[i′, j′, k] }.

(5.28)

Clearly, E′ does not contain O (5.22) as a subset. However, after restriction
to the pairs of statement instances with the same value for the prefix schedule,
i.e., after intersecting with

L = { S[i, j, k] 7→ S[i′, j, k′] } (5.29)

the relation O ∩ L ⊆ E′ ∩ L does hold. This computation is illustrated by the
transcript below.
iscc input ( ):

D := { S[i,j,k] -> S[i,j+1,k’] };

O := { S[i,j,k] -> S[i,j’,k’] : j’ > j };

P := { S[i,j,k] -> [k] };

E := P . P^-1;

Prefix := { S[i,j,k] -> [j] };

L := Prefix . (Prefix^-1);

print "Order relation is subset of equivalence relation:";

O <= E;

print "Locally , order relation is subset:";

(L * O) <= (L * E);

print "Local order relation:";

print (L * O);

print "Local equivalence relation:";

print (L * E);

iscc invocation:

iscc < placement2.iscc


D := { S[i,j,k] -> S[i,j+1,k'] };
O := { S[i,j,k] -> S[i,j',k'] : j' > j };
P := { S[i,j,k] -> [k] };
E := P . P^-1;
Prefix := { S[i,j,k] -> [j] };
L := Prefix . (Prefix^-1);
print "Order relation is subset of equivalence relation:";
O <= E;
print "Locally, order relation is subset:";
(L * O) <= (L * E);
print "Local order relation:";
print (L * O);
print "Local equivalence relation:";
print (L * E);
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iscc output:

"Order relation is subset of equivalence relation:"

False

"Locally , order relation is subset:"

True

"Local order relation:"

{ }

"Local equivalence relation:"

{ S[i, j, k] -> S[i’, j, k] }

Since these local placements are tied to a specific position in the schedule,
they are usually integrated in the schedule itself. In particular, it has become
customary to construct schedules that determine a total order rather than just
a partial order, but then to explicitly mark some of the schedule dimensions
as representing parallel execution rather than sequential execution. That is,
these schedule dimensions do not define an order, but rather define the groups
of statement instances that can be executed independently of each other (at
that position in the schedule).

Example 5.54. The integrated schedule

{ S[i, j, k] 7→ [i, j, k] }, (5.30)

with both the outermost and the innermost dimension marked as parallel com-
bines the placement (5.23) of Example 5.52 on page 119 as well as the prefix
schedule (5.26) and the local placement (5.27) of Example 5.53 on the previous
page.

In isl, a member of a band node can be marked coincident to indicate
that the corresponding multi-space piecewise quasi-affine expression identifies
groups of statement instances that are independent of each other. This property
can be set using isl_schedule_node_band_member_set_coincident and read
off using isl_schedule_node_band_member_get_coincident. The first takes
two extra arguments, the index of the band member in the band and the
new value of the property. The second takes one extra argument, the index
of the band member in the band. In the YAML representation, coincidence
is expressed through an (optional) additional coincident key on band nodes
with as value a sequence of 0/1 values indicating whether the corresponding
band member is considered coincident. If the key is missing, then all values
are assumed to be 0, i.e., no member is considered coincident.

The sequence node has no coincident attribute. Instead another node type,
the set node, has been introduced that expresses that its children can be exe-
cuted independently of each other. Its YAML representation is as follows.

set node A YAML mapping with as only key set and as corresponding value
a YAML sequence with as entries the children of the set node.
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Example 5.55. The following transcript illustrates how to explicitly mark
some schedule band members as coincident. Since the band nodes involved
all have a single member, the position of the band member is always 0 in this
example.
python input ( ) with source in Listing 5.20 on page 115:

import isl

import pet

scop = pet.scop.extract_from_C_source("demo/matmul.c",

"matmul")

schedule = scop.get_schedule ()

node = schedule.get_root (). child (0)

node = node.band_member_set_coincident (0, True)

node = node.child (0)

node = node.band_member_set_coincident (0, True)

print node

python invocation:

python < coincident.py

python output:

domain: "[N, M, K] -> { I[i, j] : 0 <= i < M and 0 <= j < N;

↪→ U[i, j, k] : 0 <= i < M and 0 <= j < N and 0 <= k <

↪→ K }"

child:

schedule: "[M, N, K] -> L_0[{ I[i, j] -> [(i)]; U[i, j, k]

↪→ -> [(i)] }]"

coincident: [ 1 ]

child:

# YOU ARE HERE

schedule: "[M, N, K] -> L_1[{ I[i, j] -> [(j)]; U[i, j,

↪→ k] -> [(j)] }]"

coincident: [ 1 ]

child:

sequence:

- filter: "[M, N, K] -> { I[i, j] }"

- filter: "[M, N, K] -> { U[i, j, k] }"

child:

schedule: "[M, N, K] -> L_2[{ U[i, j, k] -> [(k)]

↪→ }]"

5.7 Context

The context is a unit set that keeps track of conditions on the constant symbols.
These conditions can be used to simplify various computations during polyhe-
dral compilation. For example, there may be a dependence between statement


import isl
import pet

scop = pet.scop.extract_from_C_source("demo/matmul.c",
                                      "matmul")
schedule = scop.get_schedule()
node = schedule.get_root().child(0)
node = node.band_member_set_coincident(0, True)
node = node.child(0)
node = node.band_member_set_coincident(0, True)
print node




124 CHAPTER 5. POLYHEDRAL MODEL

instances that only occurs if the constant symbols satisfy some relation. If
the context contradicts this relation, then these dependences may be ignored
within that context. It can be useful to distinguish two types of contexts.

• The known context is non-empty for all values of the constant symbols for
which the input program may be executed. That is, the input program
is known not be executed for values of the constant symbols for which
the known context is empty.

• The assumed context is non-empty for the values of the constant symbols
that are considered during the analysis and/or transformation.

The known context collects constraints on the constant symbols that can be
derived from the input program in the sense that this program would not run
(properly) if these constraints do not hold. For example, the size expressions
in an array declaration need to be non-negative for the program to make anyNote 5.17

sense, meaning that the constant symbols involved are known to satisfy this
non-negativity constraint. Any values of constant symbols that certainly lead
to undefined behavior can also be excluded from the known context. Examples
of undefined behavior in C include division by zero, out-of-bounds accesses and
(signed) integer overflow. The bounds on constant symbols derived from the
types of the corresponding program variables also belong to the known context.

Example 5.56. Consider the program in Listing 5.20 on page 115. Even
though the formal arguments M, N and K are declared to be (possibly negative)
integers, their use in the size expressions of the other arguments implies that
they are all non-negative. The corresponding constant symbols may therefore
also be assumed to be non-negative.

The assumed context collects constraints that make it easier to perform
polyhedral compilation. A typical use case are constraints that prevent aliasing.
For example, a negative array index expression is not necessarily invalid in
C, especially in the case of multi-dimensional arrays, but allowing them does
mean that multiple sequences of index expressions may refer to the same array
element. The same holds for index expressions with a value that is greater
than the corresponding array size. The assumed context may be treated as a
subset of the known context.

Example 5.57. Consider an array that is declared as follows.

int A[M][N];

The expression A[2][-1] is perfectly valid in C, but if refers to the same ele-
ment as A[1][N-1]. That is, allowing A[2][-1] would result in aliasing.

Currently, pet does not make a distinction between a known context and
an assumed context. The context it computes is essentially a known context,
but is also includes some constraints that should in principle only be taken
into account for an assumed context. The function pet_scop_get_context
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void f(int n, int m, int S,

int D[const restrict static S])

{

for (int i = 0; i < n; i++) {

D[i] = D[i + m];

}

}

Listing 5.21: Input file

can be used to extract this context from a pet_scop. Depending on the state
of the --signed-overflow option, the context also includes constraints that
avoid signed integer overflow. The state of this option may be changed by
calling the pet_options_set_signed_overflow function. The possible values
are PET_OVERFLOW_AVOID and PET_OVERFLOW_IGNORE.

Example 5.58. The following transcript prints the context of the program
in Listing 5.20 on page 115. The lower bounds on the constant symbols are
derived from the fact that they are used as size expressions and therefore need
to be non-negative. The upper bounds are derived from the types of the corre-
sponding program variables.
python input ( ) with source in Listing 5.20 on page 115:

import isl

import pet

scop = pet.scop.extract_from_C_source("demo/matmul.c",

"matmul")

print scop.get_context ()

python invocation:

python < context.py

python output:

[N, M, K] -> { : 0 <= N <= 2147483647 and 0 <= M <=

↪→ 2147483647 and 0 <= K <= 2147483647 }

Example 5.59. Consider the program in Listing 5.21. The transcript below
shows the context with and without taking into account that signed integers
should not overflow. In the first output, the context consists of two disjuncts,
one corresponding to the state where the loop is not executed (n ≤ 0) and
one corresponding to the state where the loop is executed (n > 0). In the
second disjunct, m is also required to be non-negative because element i + m
of D is accessed for i = 0. In the second output (where integer overflow is
taken into account), the constraint m ≤ 2147483647 is further restricted to
m + n ≤ 2147483648.


void f(int n, int m, int S,
        int D[const restrict static S])
{
        for (int i = 0; i < n; i++) {
                D[i] = D[i + m];
        }
}



import isl
import pet

scop = pet.scop.extract_from_C_source("demo/matmul.c",
                                      "matmul")
print scop.get_context()
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python input ( ) with source in Listing 5.21 on the previous page:

import isl

import pet

pet.options.set_autodetect(True)

pet.options.set_signed_overflow(pet.overflow.ignore)

scop = pet.scop.extract_from_C_source("demo/overflow.c",

"f")

print scop.get_context ()

pet.options.set_signed_overflow(pet.overflow.avoid)

scop = pet.scop.extract_from_C_source("demo/overflow.c",

"f")

print scop.get_context ()

python invocation:

python < overflow.py

python output:

[S, n, m] -> { : 0 <= S <= 2147483647 and -2147483648 <= n

↪→ <= 2147483647 and -2147483648 <= m <= 2147483647 and

↪→ (n <= 0 or (n > 0 and m >= 0)) }

[S, n, m] -> { : 0 <= S <= 2147483647 and -2147483648 <= n

↪→ <= 2147483647 and m >= -2147483648 and ((n <= 0 and m

↪→ <= 2147483647) or (n > 0 and 0 <= m <= 2147483648 -

↪→ n)) }

It is also possible for the user to express some known constraints on the
state of the variables using a __pencil_assume statement. In particular, theNote 5.18

argument of this syntactic function call is a boolean expression that is guar-
anteed by the user to hold at the point in the program where it is executed.
Currently, pet only takes into account expressions that are quasi-affine in the
parameters and the outer loop iterators. Note that if pet were to make a
distinction between the known context and the assumed context, then these
constraints would end up in the known context since they are guaranteed to
hold.

Example 5.60. Consider the program in Listing 5.22 on the facing page, which
is identical to that in Listing 5.21 on the previous page, except that a “call” to
__pencil_assume has been added. Specifically, the user asserts that this point
will only be reached when m is greater than n. Since these two variables can be
treated as constant symbols, this means that this condition holds for the entire
analyzed fragment and therefore ends up in the context. The transcript below
prints this context.
python input ( ) with source in Listing 5.22 on the facing page:

import isl

import pet


import isl
import pet

pet.options.set_autodetect(True)
pet.options.set_signed_overflow(pet.overflow.ignore)
scop = pet.scop.extract_from_C_source("demo/overflow.c",
                                      "f")
print scop.get_context()
pet.options.set_signed_overflow(pet.overflow.avoid)
scop = pet.scop.extract_from_C_source("demo/overflow.c",
                                      "f")
print scop.get_context()



import isl
import pet

pet.options.set_autodetect(True)
pet.options.set_signed_overflow(pet.overflow.ignore)
scop = pet.scop.extract_from_C_source("demo/assume.c", "f")
print scop.get_context()
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void f(int n, int m, int S,

int D[const restrict static S])

{

__pencil_assume(m > n);

for (int i = 0; i < n; i++) {

D[i] = D[i + m];

}

}

Listing 5.22: Input file

pet.options.set_autodetect(True)

pet.options.set_signed_overflow(pet.overflow.ignore)

scop = pet.scop.extract_from_C_source("demo/assume.c", "f")

print scop.get_context ()

python invocation:

python < assume.py

python output:

[S, n, m] -> { : 0 <= S <= 2147483647 and n >= -2147483648

↪→ and n < m <= 2147483647 }

5.8 Polyhedral Statements

The polyhedral statement is the basic unit of execution for the purpose of
representing a piece of code using a polyhedral model. That is, the elements
of the instance set represent instances of these polyhedral statements.

The choice of the basic unit of execution somewhat depends on the input
from which the polyhedral model is extracted. Broadly speaking, there are
three classes of inputs.

• The input language may have been specifically designed for polyhedral
compilation. In this case, there is a direct correspondence between the Note 5.19

language and the model and it is therefore up to the user to decide what
constitutes a polyhedral statement.

• The input language may be a standard programming language such as
C or Fortran, typically with restrictions on the kinds of constructs that
can be used. In this case, a polyhedral statement usually corresponds to
an expression statement in the source program. However, a polyhedral
statement may also consist of a collection of program statements, or, Note 5.20

conversely, a program statement may be broken up into several polyhedral
statements. Note 5.21


void f(int n, int m, int S,
        int D[const restrict static S])
{
        __pencil_assume(m > n);
        for (int i = 0; i < n; i++) {
                D[i] = D[i + m];
        }
}
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• The input may be the internal representation of a compiler. It may be
slightly more difficult to extract a polyhedral representation from such an
internal representation because loop structures and in particular loop in-
duction variables may not be readily available. On the other hand, several
ways of expressing the same control flow can be mapped to the same inter-
nal representation before the extraction through canonicalization of that
representation. In particular, code written in different source languages
can typically be treated in the same way. The polyhedral statements
usually correspond to the basic blocks in the internal representation.Note 5.22

As explained in Section 5.2.3 Representation in pet , the polyhedral state-
ments extracted by pet are either expression statements or larger statements
that contain dynamic control. For each polyhedral statement, pet keeps track
of additional information. This additional information includes the subset of
the instance set containing instances of the polyhedral statement and a repre-
sentation of the corresponding program statement in the form of a tree. This
tree is needed to print the bodies of the statements of a polyhedrally trans-
formed program printed in the form of source code. For each memory access
in this tree, pet also keeps track of the reference identifier, the access relations
restricted to this access and the index expression. This index expression is
a tuple of piecewise quasi-affine expressions that collects the expressions that
appear in the access in the program text. In general, it is different from the
access relations since it may reference a (single) slice of an array or an entire
structure, while the access relations always reference individual data elements.
The index expression is kept track of separately since it may be needed for
printing the transformed code and it may be difficult or even impossible to
extract from the access relations, especially if the access appears in a function
call and the access relations have been set based on the accesses inside the
body of the called function.

Example 5.61. Consider the access to A in statement S of the program in List-
ing 5.11 on page 99. The corresponding index expression is simply

[n] -> { S[] -> A[] }

while the (write) access relation is

[n] -> { S[] -> A[o0, o0] : 0 <= o0 < n }

as shown in Example 5.22 on page 99.
Similarly, consider the write access to A in statement S of the program

in Listing 5.15 on page 104. The corresponding index expression is

{ S[] -> A[(0)] }

while the access relation is

{ S[] -> A_re[A[0] -> re[]];

S[] -> A_im[A[0] -> im[]] }

as shown in Example 5.29 on page 104.
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5.9 Operations

This section briefly describes some of the major steps in polyhedral compilation.

Extraction The extraction phase extracts a polyhedral model from the input
code. The output of this step typically consists of the instance set, the Note 5.23

access relations and the original schedule. It may also include the depen-
dence relations if these can be readily read off from the input code or if
they are computed during the extraction phase. In some cases, the input
code does not have an inherent execution order, in which case no original
schedule is extracted.

Dependence analysis Dependence analysis takes the instance set, the access
relations and the original schedule as input and produces dependence
relations. Dependence analysis is described in more detail in Chapter 6 Note 5.24

Dependence Analysis.

Scheduling Scheduling takes the instance set and the dependence relations
as input and computes a new schedule. This schedule may be computed Note 5.25

from scratch based on the dependence relations or it may be constructed
incrementally through modifications of the original schedule, which is
then an additional input.

AST generation AST generation, also known as polyhedral scanning and
code generation takes an instance set and a schedule as input and pro-
duces an Abstract Syntax Tree (AST) that executes the elements of the
instance set in the order specified by the schedule. Note 5.26

Notes

5.1. Examples of polyhedral compilation frameworks where the basic execu-
tion entity is a basic block are GCC’s GRAPHITE (Trifunovic et al. 2010) and
LLVM’s Polly (Grosser, Größlinger, et al. 2012).
5.2. These names are derived from those of similar concepts, e.g., the set of
iterations of a perfectly nested loop, in precursors of polyhedral compilation.
The term “iteration domain” appears to have been introduced by Irigoin and
Triolet (1986). Irigoin (1987) uses “domaine d’itérations” as a translation for
“index set”.
5.3. The author knows of no practical use case for a must-read access relation.
5.4. Curiously, some authors, e.g., Trifunovic et al. (2010), treat scalars as
one-dimensional arrays with a single integer index equal to zero. Possibly, this
stems from a desire to treat scalars as actual array accesses, even at the level
of the internal representation of the compiler.
5.5. Declaring a function argument of the form type A[a][b][c] in C is just
a fancy way of writing type (*A)[b][c]. That is, there is no information
about how many elements of type type[b][c] the pointer A points to. Adding
the static keyword, as in type A[static a][b][c] means that A points to a



130 CHAPTER 5. POLYHEDRAL MODEL

region of memory that holds at least a such elements. Since this specification
only allows the function to access those first a elements, pet takes the dec-
laration to mean that only those elements may effectively be accessed by the
function.
5.6. Technically the restrict keyword only means that the annotated point-
ers do not alias if they are used to write to memory, but this is effectively the
only case that the (polyhedral) compiler needs to worry about.
5.7. See Feautrier (1998) for a proposal on how to represent recursive trees in
a way that was inspired by polyhedral compilation.
5.8. An alternative would be to start from the outer field access and to put
further field accesses into the ranges of the wrapped relations. The choice is
fairly arbitrary. Arguably, using n-ary relations would be a more appropriate
representation, but they are not currently supported by isl.
5.9. The value-based and memory-based terminology was introduced by Pugh
and Wonnacott (1994).
5.10. Some authors, e.g., Yang et al. (1995) and Darte and Vivien (1997),
use the term dependence polyhedron to refer to a polyhedron of dependence
distances instead.
5.11. Darte et al. (2005) present an algorithm for computing contractions
and provides an overview of earlier techniques. Darte et al. (2004) provide
even more details.
5.12. Feautrier (1988a) describes how to compute an expansion.
5.13. Schedule trees were introduced by Verdoolaege, Guelton, et al. (2014)
and refined by Grosser, Verdoolaege, et al. (2015).
5.14. The other node types are deferred to a later version of this tutorial.
5.15. Kelly’s abstraction was introduced by Kelly and Pugh (1995) and is
called “my new abstraction” by Kelly (1996, Section 2.2.2). 2d + 1-schedules
were introduced by Cohen, Girbal, et al. (2004), Cohen, Sigler, et al. (2005),
and Girbal et al. (2006). They do not form a “pure” schedule representation
as some operations such as tiling require modifications to the instance set
representation.
5.16. The YAML specification is available from Ben-Kiki and Evans (2009).
5.17. Technically, the C standard requires arrays to be of size at least one,
but most compilers allow arrays of size zero.
5.18. The __pencil_assume predicate was introduced by Baghdadi et al.
(2015) and Verdoolaege (2015b)
5.19. AlphaZ (Yuki, Gupta, et al. 2012) is an example of a language that was
specifically designed with polyhedral compilation in mind.
5.20. An example of an approach where several program statements are com-
bined into a single polyhedral statement is that of Mehta and Yew (2015). In
particular, consecutive expression statements in the program text are consid-
ered as a single polyhedral statement.
5.21. An example of an approach where a single program statement gives rise
to several polyhedral statements is that of Stock et al. (2014).
5.22. See Note 5.1 for examples of frameworks using basic blocks as polyhedral
statements.
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5.23. Commonly used tools for extracting a polyhedral model include clan

(Bastoul 2008) and pet (Verdoolaege and Grosser 2012). Many polyhedral
frameworks include a tailored extraction procedure.
5.24. Maslov (1994) and Klimov (2014) advocate performing dependence anal-
ysis during the extraction phase.
5.25. Feautrier (1992a) and Feautrier (1992b) describe one of earliest schedul-
ing algorithms in polyhedral compilation. Darte, Robert, et al. (2000) provides
an overview of the scheduling algorithms that were known at the time. One of
the most popular scheduling algorithms in current use is the “Pluto” scheduling
algorithm of Bondhugula et al. (2008) and Acharya and Bondhugula (2015).
5.26. Polyhedral scanning (Ancourt and Irigoin 1991) more precisely describes
one of the core steps in AST generation, which is to generate an AST for visiting
all the points in a polyhedron. The complete procedure is called scanning
unions of polyhedra by Quilleré et al. (2000). The term “code generation” is
used by, e.g., Kelly, Pugh, and Rosser (1995) and Bastoul (2004), but many
other authors use the same term for other or more general functionality. The
most recent algorithms for AST generation are described by Bastoul (2004),
Chen (2012), and Grosser, Verdoolaege, et al. (2015).





Chapter 6

Dependence Analysis

6.1 Dependence Analysis

Recall from Section 5.4 Dependence Relations that there is a dependence be-
tween two statement instances if they both (may) access the same memory
element, at least one of which by writing to the memory element, and the first
is executed before the second in the input program.

Computing dependence relations from the access relations and the schedule
is fairly easy. Let us consider the read-after-write dependence relation as an
example. Let W refer to the may-write access relation and let R refer to the
may-read access relation. The first step is to compute the pairs of statement
instances, one performing a write and one performing a read, that may access
the same data element. This relation can be obtained by composing the may-
write access relation with the inverse of the may-read access relation, i.e.,

R−1 ◦W. (6.1)

Finally, only those pairs of statement instances should be retained where the
first instance is executed before the second. That is, the pair needs to be a
member of the order relation defined by the input schedule S. In other words,
(6.1) needs to be intersected with this order relation, i.e.,(

R−1 ◦W
)
∩ <S . (6.2)

The write-after-read dependence relation and the write-after-write dependence
relation can be similarly computed as(

W−1 ◦R
)
∩ <S (6.3)

and (
W−1 ◦W

)
∩ <S . (6.4)

A direct evaluation of the above expressions for the dependence relations
requires the execution order relation <S to be computed from the schedule S
first. This order relation can be easily computed from a Presburger relation

133
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float f1(float );

float f2(float );

void f(int n, float A[restrict static n],

float B[restrict static n])

{

float t;

for (int i = 0; i < n; ++i) {

S: t = f1(A[i]);

T: B[i] = f2(t);

}

}

Listing 6.1: Input file

representation of the schedule since it is a relation between pairs of domain
elements in this flat schedule such that the corresponding range element are
in lexicographic order. The execution order relation is then none other than
the lexicographically-smaller-than relation between the flat schedule and itself.
That is,

<S= S ≺ S, (6.5)

with S a Presburger relation representation of the schedule. Note that, as
explained in Section 5.6.1 Schedule Definition and Representation, an explicit
computation of the order relation results in a data structure that is quadratic
in the number of statements. This computation can be avoided by using the
approximate dataflow analysis of Section 6.3 Approximate Dataflow Analysis
below.

Example 6.1. Consider the program in Listing 6.1, which is a completed ver-
sion of the code in Listing 5.16 on page 107. The transcript below first computes
the corresponding order relation and then derives the dependence relations. The
resulting dependence relations are those shown in Example 5.34 on page 107,
specialized to the set of instances that perform the relevant accesses.
iscc input ( ) with source in Listing 6.1:

P := parse_file "demo/false.c";

Write := P[2];

Read := P[3];

Schedule := map(P[4]);

Order := Schedule << Schedule;

print "Order relation:";

print Order;

print "Read -after -write dependence relation:";

(Write . Read^-1) * Order;

print "Write -after -read dependence relation:";


float f1(float);
float f2(float);

void f(int n, float A[restrict static n],
        float B[restrict static n])
{
        float t;

        for (int i = 0; i < n; ++i) {
S:              t = f1(A[i]);
T:              B[i] = f2(t);
        }
}



P := parse_file "demo/false.c";
Write := P[2];
Read := P[3];
Schedule := map(P[4]);
Order := Schedule << Schedule;
print "Order relation:";
print Order;
print "Read-after-write dependence relation:";
(Write . Read^-1) * Order;
print "Write-after-read dependence relation:";
(Read . Write^-1) * Order;
print "Write-after-write dependence relation:";
(Write . Write^-1) * Order;
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(Read . Write^-1) * Order;

print "Write -after -write dependence relation:";

(Write . Write^-1) * Order;

iscc invocation:

iscc < false.iscc

iscc output:

"Order relation:"

[n] -> { S[i] -> T[i’] : i’ > i; S[i] -> T[i]; T[i] -> S[i’]

↪→ : i’ > i; S[i] -> S[i’] : i’ > i; T[i] -> T[i’] : i’

↪→ > i }

"Read -after -write dependence relation:"

[n] -> { S[i] -> T[i’] : 0 <= i < n and i’ > i and 0 <= i’ <

↪→ n; S[i] -> T[i] : 0 <= i < n }

"Write -after -read dependence relation :"

[n] -> { T[i] -> S[i’] : 0 <= i < n and i’ > i and 0 <= i’ <

↪→ n }

"Write -after -write dependence relation:"

[n] -> { S[i] -> S[i’] : 0 <= i < n and i’ > i and 0 <= i’ <

↪→ n }

6.2 Dataflow Analysis

The computation of dataflow dependences is slightly more complicated. As-
sume first that they can be computed exactly. This means in particular that Note 6.1

the write and read access relations are known and represented exactly. Several
ways of computing the dataflow dependences are described in order to illustrate
the use of some of the operations on sets and binary relations and to point out
some possible pitfalls of the different alternatives.

As explained in Section 5.4 Dependence Relations, a dataflow dependence
is a read-after-write dependence for which there is no intermediate write to
the same memory location. One way of computing dataflow dependences is
then to remove those read-after-write dependences for which there is such an
intermediate write. The removed dependences are said to be killed by the
intermediate write. In order to be able to match the intermediate writes with
the right read-after-write dependences, the dependences need to keep track
of the memory element involved. For this purpose, the read access relation
R, mapping statement instances to data elements, is replaced by its range
projection

R1 = ran−→R, (6.6)

mapping pairs of statement instances and data elements to the data elements.
Similarly, the write access relation W is replaced by

W1 = ran−→W. (6.7)
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Only replacing R by R1 and W by W1 does not produce the desired result
because <S still contains pairs of statement instances rather than pairs of
pairs of statement instances and data elements. The data elements can be
introduced into the schedule by setting

S1 = S ◦
(

dom−−→ (R ∪W )
)
. (6.8)

The read-after-write dependences with associated array elements can then be
computed as

D1 =
(
R−11 ◦W1

)
∩ <S1

, (6.9)

with <S1
computed as in (6.5). Similarly, the write-after-write dependences

with associated array elements can be computed as

O1 =
(
W−11 ◦W1

)
∩ <S1

. (6.10)

The flow dependences are then the read-after-write dependences, apart from
those that can be obtained as a combination of write-after-write dependence
and a read-after-write dependence, i.e.,

F1 = D1 \ (D1 ◦O1). (6.11)

The reference to the array elements can be removed from F1 by taking its
domain factor.

Example 6.2. The transcript below illustrates the computation of the dataflow
dependences of the code in Listing 6.1 on page 134. The final step of computing
the domain factor is performed by taking the domain of the zipped relation. The
resulting dataflow dependence relation is equal to the one from Example 5.38 on
page 109, specialized to the set of instances that perform the relevant accesses.
iscc input ( ) with source in Listing 6.1 on page 134:

P := parse_file "demo/false.c";

Write := P[2];

Read := P[3];

Schedule := map(P[4]);

Write1 := range_map Write;

Read1 := range_map Read;

Schedule1 := (domain_map (Read + Write)) . Schedule;

Order1 := Schedule1 << Schedule1;

RAW := (Write1 . Read1^-1) * Order1;

WAW := (Write1 . Write1^-1) * Order1;

Flow := RAW - (WAW . RAW);

print "Write access relation:";

print Write1;

print "Read access relation:";

print Read1;

print "Schedule:";

print Schedule1;


P := parse_file "demo/false.c";
Write := P[2];
Read := P[3];
Schedule := map(P[4]);
Write1 := range_map Write;
Read1 := range_map Read;
Schedule1 := (domain_map (Read + Write)) . Schedule;
Order1 := Schedule1 << Schedule1;
RAW := (Write1 . Read1^-1) * Order1;
WAW := (Write1 . Write1^-1) * Order1;
Flow := RAW - (WAW . RAW);
print "Write access relation:";
print Write1;
print "Read access relation:";
print Read1;
print "Schedule:";
print Schedule1;
print "Order relation:";
print Order1;
print "Read-after-write dependence relation:";
print RAW;
print "Write-after-write dependence relation:";
print WAW;
print "Flow dependence relation:";
print Flow;
unwrap (domain (zip Flow));
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print "Order relation:";

print Order1;

print "Read -after -write dependence relation:";

print RAW;

print "Write -after -write dependence relation:";

print WAW;

print "Flow dependence relation:";

print Flow;

unwrap (domain (zip Flow ));

iscc invocation:

iscc < dataflow.iscc

iscc output:

"Write access relation:"

[n] -> { [T[i] -> B[i]] -> B[i] : 0 <= i < n; [S[i] -> t[]]

↪→ -> t[] : 0 <= i < n }

"Read access relation:"

[n] -> { [S[i] -> A[i]] -> A[i] : 0 <= i < n; [T[i] -> t[]]

↪→ -> t[] : 0 <= i < n }

"Schedule:"

[n] -> { [S[i] -> A[i]] -> [i, 0] : 0 <= i < n; [T[i] -> B[i

↪→ ]] -> [i, 1] : 0 <= i < n; [T[i] -> t[]] -> [i, 1] :

↪→ 0 <= i < n; [S[i] -> t[]] -> [i, 0] : 0 <= i < n }

"Order relation:"

[n] -> { [S[i] -> t[]] -> [S[i’] -> A[i’]] : 0 <= i < n and

↪→ i’ > i and 0 <= i’ < n; [S[i] -> t[]] -> [S[i’] -> t

↪→ []] : 0 <= i < n and i’ > i and 0 <= i’ < n; [T[i] ->

↪→ t[]] -> [S[i’] -> A[i’]] : 0 <= i < n and i’ > i and

↪→ 0 <= i’ < n; [T[i] -> t[]] -> [T[i’] -> B[i’]] : 0

↪→ <= i < n and i’ > i and 0 <= i’ < n; [T[i] -> B[i]]

↪→ -> [T[i’] -> t[]] : 0 <= i < n and i’ > i and 0 <= i’

↪→ < n; [T[i] -> t[]] -> [T[i’] -> t[]] : 0 <= i < n

↪→ and i’ > i and 0 <= i’ < n; [S[i] -> A[i]] -> [T[i’]

↪→ -> t[]] : 0 <= i < n and i’ > i and 0 <= i’ < n; [S[i

↪→ ] -> A[i]] -> [T[i] -> t[]] : 0 <= i < n; [T[i] -> B[

↪→ i]] -> [S[i’] -> t[]] : 0 <= i < n and i’ > i and 0

↪→ <= i’ < n; [S[i] -> t[]] -> [T[i’] -> B[i’]] : 0 <= i

↪→ < n and i’ > i and 0 <= i’ < n; [S[i] -> t[]] -> [T[

↪→ i] -> B[i]] : 0 <= i < n; [S[i] -> A[i]] -> [T[i’] ->

↪→ B[i’]] : 0 <= i < n and i’ > i and 0 <= i’ < n; [S[i

↪→ ] -> A[i]] -> [T[i] -> B[i]] : 0 <= i < n; [S[i] -> A

↪→ [i]] -> [S[i’] -> t[]] : 0 <= i < n and i’ > i and 0

↪→ <= i’ < n; [T[i] -> B[i]] -> [T[i’] -> B[i’]] : 0 <=

↪→ i < n and i’ > i and 0 <= i’ < n; [S[i] -> t[]] -> [T

↪→ [i’] -> t[]] : 0 <= i < n and i’ > i and 0 <= i’ < n;

↪→ [S[i] -> t[]] -> [T[i] -> t[]] : 0 <= i < n; [S[i]

↪→ -> A[i]] -> [S[i’] -> A[i’]] : 0 <= i < n and i’ > i

↪→ and 0 <= i’ < n; [T[i] -> B[i]] -> [S[i’] -> A[i’]] :
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↪→ 0 <= i < n and i’ > i and 0 <= i’ < n; [T[i] -> t[]]

↪→ -> [S[i’] -> t[]] : 0 <= i < n and i’ > i and 0 <= i

↪→ ’ < n }

"Read -after -write dependence relation:"

[n] -> { [S[i] -> t[]] -> [T[i’] -> t[]] : i >= 0 and i < i’

↪→ < n; [S[i] -> t[]] -> [T[i] -> t[]] : 0 <= i < n }

"Write -after -write dependence relation:"

[n] -> { [S[i] -> t[]] -> [S[i’] -> t[]] : 0 <= i < n and i’

↪→ > i and 0 <= i’ < n }

"Flow dependence relation :"

[n] -> { [S[i] -> t[]] -> [T[i] -> t[]] : 0 <= i < n }

[n] -> { S[i] -> T[i] : 0 <= i < n }

An alternative to modifying the schedule in (6.8) and using the order defined
by this modified schedule is to use the order defined by the original schedule
and to apply it to the right part of R−11 ◦ W1. In particular, (6.9) can be
replaced by

D1 = zip
((

zip
(
R−11 ◦W1

))
∩domW (<S)

)
, (6.12)

while (6.10) can be replaced by

O1 = zip
((

zip
(
W−11 ◦W1

))
∩domW (<S)

)
, (6.13)

Example 6.3. The transcript below illustrates that this alternative way of
computing D1 and O1 produces the same results.
iscc input ( ) with source in Listing 6.1 on page 134:

P := parse_file "demo/false.c";

Write := P[2];

Read := P[3];

Schedule := map(P[4]);

Write1 := range_map Write;

Read1 := range_map Read;

Order := Schedule << Schedule;

RAW := zip ((zip (Write1 . Read1^-1)) * wrap(Order ));

WAW := zip ((zip (Write1 . Write1^-1)) * wrap(Order ));

print "Order relation:";

print Order;

print "Read -after -write dependence relation:";

print RAW;

print "Write -after -write dependence relation:";

print WAW;

iscc invocation:

iscc < dataflow2.iscc

iscc output:

"Order relation:"


P := parse_file "demo/false.c";
Write := P[2];
Read := P[3];
Schedule := map(P[4]);
Write1 := range_map Write;
Read1 := range_map Read;
Order := Schedule << Schedule;
RAW := zip ((zip (Write1 . Read1^-1)) * wrap(Order));
WAW := zip ((zip (Write1 . Write1^-1)) * wrap(Order));
print "Order relation:";
print Order;
print "Read-after-write dependence relation:";
print RAW;
print "Write-after-write dependence relation:";
print WAW;
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[n] -> { S[i] -> T[i’] : i’ > i; S[i] -> T[i]; T[i] -> S[i’]

↪→ : i’ > i; S[i] -> S[i’] : i’ > i; T[i] -> T[i’] : i’

↪→ > i }

"Read -after -write dependence relation:"

[n] -> { [S[i] -> t[]] -> [T[i’] -> t[]] : 0 <= i < n and i’

↪→ > i and 0 <= i’ < n; [S[i] -> t[]] -> [T[i] -> t[]]

↪→ : 0 <= i < n }

"Write -after -write dependence relation :"

[n] -> { [S[i] -> t[]] -> [S[i’] -> t[]] : 0 <= i < n and i’

↪→ > i and 0 <= i’ < n }

The main problem with the way of computing dataflow dependences de-
scribed above is that it cannot easily deal with approximations. In particular,
D1 is used on both sides of a subtraction operation in (6.11). This means that
if D1 is an overapproximation, then the result is not guaranteed to be an over-
approximation or an underapproximation, while most practical uses depend on
such a guarantee.

An alternative way of computing dataflow dependences is to not think
of them as the read-after-write dependences with no intermediate write, but
rather as pairing off each read with the last preceding write to the same mem-
ory element. The first step in this computation is to pair off each read with all
preceding writes to the same memory element:

A =
(
W−1 ◦R

)
∩ (<S)−1, (6.14)

with W the write access relation, R the read access relation and S the schedule.
To simplify the exposition, it is assumed here that every statement instance
reads or writes at most one data element. Otherwise, it would be required to
also keep track of the relevant data element(s). Having collected all statement
instances that previously wrote to the memory element read by a given state-
ment instance, the last of these writing statement instances now needs to be
computed. In particular, the statement instance that is assigned the lexico-
graphically greatest value by the (Presburger relation representation of) the
schedule needs to be computed. The writing instances are then first mapped
to their positions in the schedule, the lexicographically greatest position is se-
lected and then the positions are mapped back to the writing instances. The
result maps read instances to write instances and so the dataflow dependence
relation is the inverse of this result. That is,

F =
(
S−1 ◦ lexmax (S ◦A)

)−1
. (6.15)

Note that this computation assumes that the order defined by the schedule
is total, i.e., that the schedule assigns a different position to each statement
instance, such that the statement instance can be recovered from the position.
Keeping track of an extra copy of the write statement instance before compo-
sition with the schedule does not help because the lexicographical maximum
would then be computed as a function of both the read and the write statement
instance.
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Example 6.4. The transcript below uses the method described above to com-
pute the same flow dependences as in Example 6.2 on page 136.

iscc input ( ) with source in Listing 6.1 on page 134:

P := parse_file "demo/false.c";

Write := P[2];

Read := P[3];

Schedule := map(P[4]);

Order := Schedule << Schedule;

A := (Read . Write^-1) * (Order ^-1);

F := (( lexmax (A . Schedule )) . Schedule^-1)^-1;

print "Reads mapped to all previous writes:";

print A;

print "Flow dependences:";

print F;

iscc invocation:

iscc < dataflow3.iscc

iscc output:

"Reads mapped to all previous writes:"

[n] -> { T[i] -> S[i’] : 0 <= i < n and 0 <= i’ < i and i’ <

↪→ n; T[i] -> S[i] : 0 <= i < n }

"Flow dependences :"

[n] -> { S[i] -> T[i] : 0 < i < n; S[0] -> T[0] : n > 0 }

6.3 Approximate Dataflow Analysis

The previous section described how to perform (simplified forms of) dataflow
analysis exactly. However, the access relations may not always be known ex-
actly since the accesses may depend on run-time information or they may not
be representable as Presburger relations. In such cases, dataflow analysis can
only be performed approximately. Broadly speaking, there are two approaches
for computing approximate dataflow.

• One approach is to operate on may and must versions of access relations
and to compute approximate dataflow directly.

• The other is to keep track of additional run-time information and to
derive an exact, but run-time-dependent dataflow dependence relation.Note 6.2

An approximate dataflow relation can then be derived by projecting out
all the run-time-dependent information, possibly after a simplification
based on exploiting some known properties of the run-time-dependent
information. Because this approach keeps track of more information, it
is in general capable of computing more accurate approximations.


P := parse_file "demo/false.c";
Write := P[2];
Read := P[3];
Schedule := map(P[4]);
Order := Schedule << Schedule;
A := (Read . Write^-1) * (Order^-1);
F := ((lexmax (A . Schedule)) . Schedule^-1)^-1;
print "Reads mapped to all previous writes:";
print A;
print "Flow dependences:";
print F;




6.3. APPROXIMATE DATAFLOW ANALYSIS 141

This section is devoted to a direct computation of approximate dataflow de-
pendences.

Recall that the main difference between memory-based dependence analysis
and value-based dependence analysis is that in value-based dependence analy-
sis, a write kills all dependences between another write preceding the first write
and a read following the first write. The main idea behind the approximate
dataflow analysis described in this section is then to only allow must-writes to
kill any dependences. In the worst case, none of the may-writes are also must-
writes and then the result of the dependence analysis is the same as that of a
memory-based dependence analysis. In order not to be too specific to the stan-
dard dataflow analysis, the operation is formulated in terms of may-sources,
must-sources and sinks rather than in terms of may-writes, must-writes and
reads.

Operation 6.5 (Approximate Dataflow Analysis). Approximate dataflow anal-
ysis takes as input three binary relations and a schedule on the domains of the
binary relations. The three binary relations are called the sink K, the may-
source Y and the must-source T . The schedule S is used to evaluate the predi-
cates “last”, “before” and “after” in the following sentences. For each domain
element i of the sink and for each corresponding range element a, approximate
dataflow analysis determines the last domain element j of the must-source that
is executed before i and also has a as corresponding range element. Further-
more, the analysis collects all domain elements k of the may-source that are
executed before i and after j and that also have a as corresponding range ele-
ment. If no such j can be found for a particular combination of i and a, then
the “after j” condition is dropped. In other words, for each domain element of
the sink and for each corresponding range element, the previously executed do-
main elements of the must-source and may-source that share this range element
are collected until a domain element of the must-source is found. The collection
of all such triplets j → (i → a) and k → (i → a) forms the may-dependence
relation. The subset of the j → (i→ a) for which there are no intermediate k
forms the must-dependence relation. The subset of the sink for which no cor-
responding domain element j can be found forms the may-no-source relation.
The subset of the sink for which no corresponding domain elements j or k
can be found forms the must-no-source relation. That is, the may-dependence
relation is

{k→ (i→ a) : i→ a ∈ K ∧ k→ a ∈ (T ∪ Y ) ∧ k <S i ∧
¬ (∃j : j → a ∈ T ∧ k <S j <S i) },

(6.16)

the must-dependence relation is

{k→ (i→ a) : i→ a ∈ K ∧ k→ a ∈ T ∧ k <S i ∧
¬ (∃j : j → a ∈ (T ∪ Y ) ∧ k <S j <S i) },

(6.17)

the may-no-source relation is

{ i→ a ∈ K : ¬ (∃j : j → a ∈ T ∧ j <S i) }, (6.18)
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and the must-no-source relation is

{ i→ a ∈ K : ¬ (∃j : j → a ∈ (T ∪ Y ) ∧ j <S i) }. (6.19)

In isl, the approximate dataflow analysis functionality is available through
the isl_union_access_info_compute_flow function. This function takes
an isl_union_access_info object (describing the sink, the must-source, the
may-source and the schedule) as input, and it produces an isl_union_flow

object (describing the may-dependence relation, the must-dependence relation,
the may-no-source relation and the must-no-source relation) as output. The
implementation combines techniques described in the previous sections, but it
avoids constructing a global order relation <S . The isl_union_access_info

object is constructed from the sink relation by performing a call to the func-
tion isl_union_access_info_from_sink. The must-source, the may-source
and the schedule (in the form of either a schedule tree or a Presburger relation)
can be set using the following functions.

• isl_union_access_info_set_must_source

• isl_union_access_info_set_may_source

• isl_union_access_info_set_schedule, in case the schedule is repre-
sented as a schedule tree.

• isl_union_access_info_set_schedule_map, in case the schedule is rep-
resented as a Presburger relation.

If the must-source and/or may-source is not set, then they are assumed to be
empty. The schedule is required to be set. The may-dependence relation, the
must-dependence relation, the may-no-source relation and the must-no-source
relation can be extracted from an isl_union_flow object using the following
functions.

• isl_union_flow_get_full_may_dependence returns the complete may-
dependence relation of (6.16).

• isl_union_flow_get_full_must_dependence returns the complete must-
dependence relation of (6.17).

• isl_union_flow_get_may_dependence returns the may-dependence re-
lation with the accessed element projected out. That is, it is the result
of computing the range factor of the complete may-dependence relation
considered as a range product.

• isl_union_flow_get_must_dependence returns the must-dependence re-
lation with the accessed element projected out. That is, it is the result
of computing the range factor of the complete must-dependence relation
considered as a range product.

• isl_union_flow_get_may_no_source
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• isl_union_flow_get_must_no_source

In iscc, the approximate dataflow analysis is available as the last-any-
before-under operation. In particular, the argument of last specifies the
must-source, the argument of any specifies the may-source, the argument of
before specifies the sink, and the argument of under specifies the schedule, in
either schedule tree or Presburger relation representation. One of last or any
(together with its argument) may be omitted. If only last is used, then the
result is a list containing the must-dependence relation and the must-no-source
relation. Otherwise, the output is the may-dependence relation.

6.4 Applications of Approximate Dataflow Analysis

The most obvious application of the approximate dataflow analysis operation
is to compute dataflow dependence relations. In particular, the sink is set
to the may-read access relation, the may-source is set to the may-write access
relation and the must-source is set to the must-write access relation. The result-
ing may-dependence relation represents the may-dataflow dependence relation,
while the must-dependence relation represents the must-dataflow dependence
relation. Furthermore, the may-no-source relation can be used as a may-live-in
relation. This is a relation that contains the read accesses that may read a
value that was not written inside the analyzed program fragment. If the write
accesses are known exactly, then only the must-source needs to be specified
and the must-no-source relation represents the exact live-in relation.

Example 6.6. The transcript below illustrates the computation of dataflow
dependences using approximate dataflow analysis in the exact case. The result
is the same as what was computed in Example 6.2 on page 136 and Example 6.4
on page 140, which also assumed exact write access relations. Additionally, the
live-in accesses are also computed. In particular, all reads from A in statement
S are live-in.
iscc input ( ) with source in Listing 6.1 on page 134:

P := parse_file "demo/false.c";

Write := P[2];

Read := P[3];

Schedule := P[4];

F := last Write before Read under Schedule;

print "Flow dependences:";

print F[0];

print "Live -in accesses:";

print F[1];

iscc invocation:

iscc < dataflow4.iscc

iscc output:


P := parse_file "demo/false.c";
Write := P[2];
Read := P[3];
Schedule := P[4];
F := last Write before Read under Schedule;
print "Flow dependences:";
print F[0];
print "Live-in accesses:";
print F[1];
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"Flow dependences:"

[n] -> { S[i] -> T[i] : 0 <= i < n }

"Live -in accesses:"

[n] -> { S[i] -> A[i] : 0 <= i < n }

Example 6.7. The transcript below performs the same computation as in Ex-
ample 6.6 on the preceding page, except that it does not assume that the write
access relation is exact. Since the write access relation is effectively exact, the
results are the same.
python input ( ) with source in Listing 6.1 on page 134:

import isl

import pet

pet.options.set_autodetect(True)

scop = pet.scop.extract_from_C_source("demo/false.c", "f")

schedule = scop.get_schedule ()

may_read = scop.get_may_reads ()

may_write = scop.get_may_writes ()

must_write = scop.get_must_writes ()

access = isl.union_access_info(may_read)

access = access.set_may_source(may_write)

access = access.set_must_source(must_write)

access = access.set_schedule(schedule)

flow = access.compute_flow ()

print "May -flow dependences:"

print flow.get_may_dependence ()

print "May -live -in accesses:"

print flow.get_may_no_source ()

python invocation:

python < dataflow.py

python output:

May -flow dependences:

[n] -> { S[i] -> T[i] : 0 <= i < n }

May -live -in accesses:

[n] -> { S[i] -> A[i] : 0 <= i < n }

Whereas exact dataflow analysis represents an extreme case of approximate
dataflow analysis where only the must-source is specified, the dependence anal-
ysis of Section 6.1 Dependence Analysis is at the other extreme where only the
may-source is specified. In particular, the read-after-write dependence relation
is computed by setting the may-source to the may-write access relation and
the sink to the may-read access relation. Similarly, the write-after-read depen-
dence relation is computed by setting the may-source to the may-read access


import isl
import pet

pet.options.set_autodetect(True)
scop = pet.scop.extract_from_C_source("demo/false.c", "f")
schedule = scop.get_schedule()
may_read = scop.get_may_reads()
may_write = scop.get_may_writes()
must_write = scop.get_must_writes()

access = isl.union_access_info(may_read)
access = access.set_may_source(may_write)
access = access.set_must_source(must_write)
access = access.set_schedule(schedule)
flow = access.compute_flow()
print "May-flow dependences:"
print flow.get_may_dependence()
print "May-live-in accesses:"
print flow.get_may_no_source()
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relation and the sink to the may-write access relation, while the write-after-
write dependence relation is computed by setting both the may-source and the
sink to the may-write access relation.

Example 6.8. The transcript below repeats the computation of Example 6.1
on page 134 using the approximate dataflow analysis functionality. The results
are the same.
iscc input ( ) with source in Listing 6.1 on page 134:

P := parse_file "demo/false.c";

Write := P[2];

Read := P[3];

Schedule := P[4];

print "Read -after -write dependence relation:";

any Write before Read under Schedule;

print "Write -after -read dependence relation:";

any Read before Write under Schedule;

print "Write -after -write dependence relation:";

any Write before Write under Schedule;

iscc invocation:

iscc < false2.iscc

iscc output:

"Read -after -write dependence relation:"

[n] -> { S[i] -> T[i’] : i >= 0 and i <= i’ < n }

"Write -after -read dependence relation:"

[n] -> { T[i] -> S[i’] : i >= 0 and i < i’ < n }

"Write -after -write dependence relation:"

[n] -> { S[i] -> S[i’] : i >= 0 and i < i’ < n }

In order to compute a tagged may-dataflow dependence relation or a tagged
must-dataflow dependence relation, the approximate dataflow analysis needs
to be applied to the tagged access relations. The domains of these relations are
not a subset of the instance set, however, so they do not match the domain of
the schedule. The schedule can however be pulled back to apply to the domains
of the tagged access relations.

Example 6.9. python input ( ) with source in Listing
6.1 on page 134:

import isl

import pet

pet.options.set_autodetect(True)

scop = pet.scop.extract_from_C_source("demo/false.c", "f")

schedule = scop.get_schedule ()

may_read = scop.get_tagged_may_reads ()

may_write = scop.get_tagged_may_writes ()


P := parse_file "demo/false.c";
Write := P[2];
Read := P[3];
Schedule := P[4];
print "Read-after-write dependence relation:";
any Write before Read under Schedule;
print "Write-after-read dependence relation:";
any Read before Write under Schedule;
print "Write-after-write dependence relation:";
any Write before Write under Schedule;



import isl
import pet

pet.options.set_autodetect(True)
scop = pet.scop.extract_from_C_source("demo/false.c", "f")
schedule = scop.get_schedule()
may_read = scop.get_tagged_may_reads()
may_write = scop.get_tagged_may_writes()
must_write = scop.get_tagged_must_writes()
tagged_instances = may_write.union(may_read).domain()
tagged_instances = tagged_instances.unwrap()
drop_tags = tagged_instances.domain_map_union_pw_multi_aff()
schedule = schedule.pullback(drop_tags)

access = isl.union_access_info(may_read)
access = access.set_may_source(may_write)
access = access.set_must_source(must_write)
access = access.set_schedule(schedule)
flow = access.compute_flow()
print "Tagged may-read access relation:"
print may_read
print "Tagged may-write access relation:"
print may_write
print "Tagged may-flow dependences:"
print flow.get_may_dependence()
print "Tagged may-live-in accesses:"
print flow.get_may_no_source()
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must_write = scop.get_tagged_must_writes ()

tagged_instances = may_write.union(may_read ). domain ()

tagged_instances = tagged_instances.unwrap ()

drop_tags = tagged_instances.domain_map_union_pw_multi_aff ()

schedule = schedule.pullback(drop_tags)

access = isl.union_access_info(may_read)

access = access.set_may_source(may_write)

access = access.set_must_source(must_write)

access = access.set_schedule(schedule)

flow = access.compute_flow ()

print "Tagged may -read access relation:"

print may_read

print "Tagged may -write access relation:"

print may_write

print "Tagged may -flow dependences:"

print flow.get_may_dependence ()

print "Tagged may -live -in accesses:"

print flow.get_may_no_source ()

python invocation:

python < tagged_dataflow.py

python output:

Tagged may -read access relation:

[n] -> { [T[i] -> __pet_ref_4 []] -> t[] : 0 <= i < n; [S[i]

↪→ -> __pet_ref_2 []] -> A[i] : 0 <= i < n }

Tagged may -write access relation:

[n] -> { [S[i] -> __pet_ref_1 []] -> t[] : 0 <= i < n; [T[i]

↪→ -> __pet_ref_3 []] -> B[i] : 0 <= i < n }

Tagged may -flow dependences:

[n] -> { [S[i] -> __pet_ref_1 []] -> [T[i] -> __pet_ref_4 []]

↪→ : 0 <= i < n }

Tagged may -live -in accesses:

[n] -> { [S[i] -> __pet_ref_2 []] -> A[i] : 0 <= i < n }

6.5 Kills

If there are many may-writes that are not also must-writes, then the approxi-
mate dataflow analysis can be fairly inaccurate. In some cases, the user may be
able to tell that no dataflow can occur through a given piece of memory and a
certain point in the program text. The user can communicate this information
by inserting a __pencil_kill statement at that point in the program text,Note 6.3

killing the given piece of memory. In particular, a __pencil_kill statement
consists of a “call” to __pencil_kill with as arguments the data elements
through which no data can flow at that point. These kills can then be used
to kill dependences by including them in the must-source of an approximate
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int f(int);

void g(int N, int perm[restrict static N],

int A[restrict static N])

{

S: A[0] = 1;

K: __pencil_kill(A);

for (int i = 0; i < N; ++i)

T: A[perm[i]] = f(i);

U: A[0] = f(A[0]);

}

Listing 6.2: Input file

dataflow analysis. The output may then contain “dependences” emanating
from these kills, but they can simply be removed.

The kills are collected by pet and can be extracted using a call to the
functions pet_scop_get_must_kills or pet_scop_get_tagged_must_kills.
Note that pet introduces a separate kill statement for each argument of the
__pencil_kill call. The label on the program statement may therefore not be
preserved. In iscc, the kills are not available in the output of parse_file and
the statements performing the kills are filtered out from the remaining output.

Example 6.10. Consider the code in Listing 6.2 and assume that perm is a
permutation of the integers 0 to N − 1. This means that no dataflow can oc-
cur between statement S and statement U because A[0] is overwritten by some
instance of statement T. However, the compiler does not know that perm is
a permutation. The user has therefore added a call to __pencil_kill indi-
cating that the entire array A is killed (by the instances of T). The transcript
below shows the effect of taking into account the kills during dataflow analy-
sis. In particular, when kills are not taken into account, there is an additional
dependence from statement S to statement U.
python input ( ) with source in Listing 6.2:

import isl

import pet

pet.options.set_autodetect(True)

scop = pet.scop.extract_from_C_source("demo/kill.c", "g")

schedule = scop.get_schedule ()

may_read = scop.get_may_reads ()

may_write = scop.get_may_writes ()

must_write = scop.get_must_writes ()

kill = scop.get_must_kills ()

access = isl.union_access_info(may_read)

access = access.set_may_source(may_write)

access = access.set_must_source(must_write)


int f(int);
void g(int N, int perm[restrict static N],
    int A[restrict static N])
{
S:  A[0] = 1;
K:  __pencil_kill(A);
    for (int i = 0; i < N; ++i)
T:      A[perm[i]] = f(i);
U:  A[0] = f(A[0]);
}



import isl
import pet

pet.options.set_autodetect(True)
scop = pet.scop.extract_from_C_source("demo/kill.c", "g")
schedule = scop.get_schedule()
may_read = scop.get_may_reads()
may_write = scop.get_may_writes()
must_write = scop.get_must_writes()
kill = scop.get_must_kills()

access = isl.union_access_info(may_read)
access = access.set_may_source(may_write)
access = access.set_must_source(must_write)
access = access.set_schedule(schedule)
flow1 = access.compute_flow()
access = access.set_must_source(must_write.union(kill))
flow2 = access.compute_flow()

print "May-flow dependences without kills:"
print flow1.get_may_dependence()
print "Kills:"
print kill
print "May-flow dependences with kills:"
f = flow2.get_may_dependence()
f = f.subtract_domain(kill.domain())
print f
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access = access.set_schedule(schedule)

flow1 = access.compute_flow ()

access = access.set_must_source(must_write.union(kill))

flow2 = access.compute_flow ()

print "May -flow dependences without kills:"

print flow1.get_may_dependence ()

print "Kills:"

print kill

print "May -flow dependences with kills:"

f = flow2.get_may_dependence ()

f = f.subtract_domain(kill.domain ())

print f

python invocation:

python < kill.py

python output:

May -flow dependences without kills:

[N] -> { T[i] -> U[] : 0 <= i < N; S[] -> U[] : N > 0 }

Kills:

[N] -> { S_1[] -> A[o0] : 0 <= o0 < N }

May -flow dependences with kills:

[N] -> { T[i] -> U[] : 0 <= i < N }

Besides keeping track of the kills manually introduced by the user, pet also
introduces its own kills. In particular, for any local variable that is declared
inside the analyzed region, two kill statements are automatically inserted, one
at the point where the variable is declared and one at the point where the
variable goes out of scope. The latter is omitted when the variable does not go
out of scope within the analyzed region.

Example 6.11. The code shown in Listing 6.3 on the next page is a variation
of the code shown in Listing 5.20 on page 115 with a local variable. The tran-
script below shows the kills that have been introduced by pet and the locations
where they are introduced in the schedule.
python input ( ) with source in Listing 6.3 on the next page:

import isl

import pet

scop = pet.scop.extract_from_C_source("demo/matmul2.c",

"matmul")

schedule = scop.get_schedule ()

kill = scop.get_must_kills ()

print kill

print schedule.get_root ()

python invocation:


import isl
import pet

scop = pet.scop.extract_from_C_source("demo/matmul2.c",
                                      "matmul")
schedule = scop.get_schedule()
kill = scop.get_must_kills()
print kill
print schedule.get_root()
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void matmul(int M, int N, int K,

float A[restrict static M][K],

float B[restrict static K][N],

float C[restrict static M][N])

{

#pragma scop

for (int i = 0; i < M; ++i)

for (int j = 0; j < N; ++j) {

float t;

I: t = 0;

for (int k = 0; k < K; ++k)

U: t = t + A[i][k] * B[k][j];

S: C[i][j] = t;

}

#pragma endscop

}

Listing 6.3: Input file

python < local.py

python output:

[N, M, K] -> { S_0[i, j] -> t[] : 0 <= i < M and 0 <= j < N;

↪→ S_1[i, j] -> t[] : 0 <= i < M and 0 <= j < N }

# YOU ARE HERE

domain: "[N, M, K] -> { S_1[i, j] : 0 <= i < M and 0 <= j <

↪→ N; S[i, j] : 0 <= i < M and 0 <= j < N; I[i, j] : 0

↪→ <= i < M and 0 <= j < N; U[i, j, k] : 0 <= i < M and

↪→ 0 <= j < N and 0 <= k < K; S_0[i, j] : 0 <= i < M and

↪→ 0 <= j < N }"

child:

schedule: "[M, N, K] -> L_0[{ I[i, j] -> [(i)]; S_0[i, j]

↪→ -> [(i)]; U[i, j, k] -> [(i)]; S[i, j] -> [(i)];

↪→ S_1[i, j] -> [(i)] }]"

child:

schedule: "[M, N, K] -> L_1[{ I[i, j] -> [(j)]; S_0[i, j

↪→ ] -> [(j)]; U[i, j, k] -> [(j)]; S[i, j] -> [(j)

↪→ ]; S_1[i, j] -> [(j)] }]"

child:

sequence:

- filter: "[M, N, K] -> { S_0[i, j] }"

- filter: "[M, N, K] -> { I[i, j] }"

- filter: "[M, N, K] -> { U[i, j, k] }"

child:

schedule: "[M, N, K] -> L_2[{ U[i, j, k] -> [(k)]

↪→ }]"

- filter: "[M, N, K] -> { S[i, j] }"


void matmul(int M, int N, int K,
    float A[restrict static M][K],
    float B[restrict static K][N],
    float C[restrict static M][N])
{
#pragma scop
    for (int i = 0; i < M; ++i)
        for (int j = 0; j < N; ++j) {
            float t;
I:          t = 0;
            for (int k = 0; k < K; ++k)
U:              t = t + A[i][k] * B[k][j];
S:          C[i][j] = t;
        }
#pragma endscop
}
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int f(int);

void g(int n, int A[const restrict static n])

{

#pragma scop

S: A[f(0)] = 1;

T: A[0] = 0;

#pragma endscop

}

Listing 6.4: Input file

- filter: "[M, N, K] -> { S_1[i, j] }"

6.6 Live-out Accesses

Approximate dataflow analysis can also be used to compute a may-live-out
relation. This is a relation that contains the may-write accesses that may still
have corresponding reads outside of the program fragment under analysis. In
particular, it consists of all the may-write accesses that are not killed by a
later must-write access or a kill. This set of killed may-write accesses can be
computed by performing dataflow analysis with as sinks the must-writes and
the kills and as may-sources the may-writes. The domain of the resulting may-
dependence relation can then be removed from the set of all accesses. Note that
it is important to consider the complete may-dependence relation (including
the corresponding accessed elements) since a kill of one element accessed by
a may-write should not be considered to be a kill of all elements accessed by
that write.

Example 6.12. Consider the program in Listing 6.4. Statement S may write
to any element of A. The write in T only kills the write in S if the latter writes
to element 0 of the array. The transcript below illustrates the computation of
the correponding may-live-out access relation.
python input ( ) with source in Listing 6.4:

import isl

import pet

scop = pet.scop.extract_from_C_source("demo/live -out.c",

"g")

schedule = scop.get_schedule ()

may_write = scop.get_may_writes ()

must_write = scop.get_must_writes ()

kill = scop.get_must_kills ()


int f(int);

void g(int n, int A[const restrict static n])
{
#pragma scop
S:      A[f(0)] = 1;
T:      A[0] = 0;
#pragma endscop
}



import isl
import pet

scop = pet.scop.extract_from_C_source("demo/live-out.c",
                                      "g")
schedule = scop.get_schedule()
may_write = scop.get_may_writes()
must_write = scop.get_must_writes()
kill = scop.get_must_kills()

access = isl.union_access_info(must_write.union(kill))
access = access.set_may_source(may_write)
access = access.set_schedule(schedule)
flow = access.compute_flow()
dep = flow.get_full_may_dependence()
killed = dep.range_factor_range()
live_out = may_write.subtract(killed)
print live_out
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access = isl.union_access_info(must_write.union(kill))

access = access.set_may_source(may_write)

access = access.set_schedule(schedule)

flow = access.compute_flow ()

dep = flow.get_full_may_dependence ()

killed = dep.range_factor_range ()

live_out = may_write.subtract(killed)

print live_out

python invocation:

python < live -out.py

python output:

[n] -> { T[] -> A[0] : n > 0; S[] -> A[o0] : 0 < o0 < n }

Notes

6.1. Exact dataflow analysis is described by Feautrier (1991) and, using a
different algorithm, by Pugh and Wonnacott (1994). Yuki, Feautrier, et al.
(2013) describe an extension to X10 programs.
6.2. One technique that follows this approach is the “fuzzy array dataflow
analysis technique of Barthou et al. (1997). Verdoolaege, Nikolov, et al. (2013)
present a related technique.
6.3. The __pencil_kill statement was introduced by Baghdadi et al. (2015)
and was inspired by the KILL statement of Vandierendonck et al. (2010).
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PhD thesis. Faculté des Sciences Appliquées de l’Université de Liège. [67]
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Bruyère, Véronique (1985). “Entiers et automates finis”. Mémoire de fin d’études.
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